Solutions of Second-Order m-Point Boundary Value Problems for Impulsive Dynamic Equations on Time Scales
We study a general second-order m-point boundary value problems for nonlinear singular impulsive dynamic equations on time scales uΔ∇(t)+a(t)uΔ(t)+b(t)u(t)+q(t)f(t,u(t))=0,t∈(0,1),t≠tk,uΔ(tk+)=uΔ(tk)-Ik(u(tk)), and k=1,2,…,n,u(ρ(0))=0,u(σ(1))=∑i=1m-2αiu(ηi). The existence and uniqueness of positive...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2014/867018 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study a general second-order m-point boundary value problems for nonlinear singular impulsive dynamic equations on time scales uΔ∇(t)+a(t)uΔ(t)+b(t)u(t)+q(t)f(t,u(t))=0,t∈(0,1),t≠tk,uΔ(tk+)=uΔ(tk)-Ik(u(tk)), and k=1,2,…,n,u(ρ(0))=0,u(σ(1))=∑i=1m-2αiu(ηi). The existence and uniqueness of positive solutions are established by using the mixed monotone fixed point theorem on cone and Krasnosel’skii fixed point theorem. In this paper, the function items may be singular in its dependent variable. We present examples to illustrate our results. |
---|---|
ISSN: | 1110-757X 1687-0042 |