Solutions of Second-Order m-Point Boundary Value Problems for Impulsive Dynamic Equations on Time Scales

We study a general second-order m-point boundary value problems for nonlinear singular impulsive dynamic equations on time scales uΔ∇(t)+a(t)uΔ(t)+b(t)u(t)+q(t)f(t,u(t))=0,t∈(0,1),t≠tk,uΔ(tk+)=uΔ(tk)-Ik(u(tk)), and k=1,2,…,n,u(ρ(0))=0,u(σ(1))=∑i=1m-2αiu(ηi)‍. The existence and uniqueness of positive...

Full description

Saved in:
Bibliographic Details
Main Authors: Xue Xu, Yong Wang
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2014/867018
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study a general second-order m-point boundary value problems for nonlinear singular impulsive dynamic equations on time scales uΔ∇(t)+a(t)uΔ(t)+b(t)u(t)+q(t)f(t,u(t))=0,t∈(0,1),t≠tk,uΔ(tk+)=uΔ(tk)-Ik(u(tk)), and k=1,2,…,n,u(ρ(0))=0,u(σ(1))=∑i=1m-2αiu(ηi)‍. The existence and uniqueness of positive solutions are established by using the mixed monotone fixed point theorem on cone and Krasnosel’skii fixed point theorem. In this paper, the function items may be singular in its dependent variable. We present examples to illustrate our results.
ISSN:1110-757X
1687-0042