Positive and Nondecreasing Solutions to an m-Point Boundary Value Problem for Nonlinear Fractional Differential Equation

We are concerned with the existence and uniqueness of a positive and nondecreasing solution for the following nonlinear fractional m-point boundary value problem: D0+αu(t)+f(t,u(t))=0,  0<t<1,  2<α≤3,  u(0)=u'(0)=0,  u'(1)=∑i=1m-2aiu'(ξi), where D0+α denotes the standard Riem...

Full description

Saved in:
Bibliographic Details
Main Authors: I. J. Cabrera, J. Harjani, K. B. Sadarangani
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2012/826580
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832549839587508224
author I. J. Cabrera
J. Harjani
K. B. Sadarangani
author_facet I. J. Cabrera
J. Harjani
K. B. Sadarangani
author_sort I. J. Cabrera
collection DOAJ
description We are concerned with the existence and uniqueness of a positive and nondecreasing solution for the following nonlinear fractional m-point boundary value problem: D0+αu(t)+f(t,u(t))=0,  0<t<1,  2<α≤3,  u(0)=u'(0)=0,  u'(1)=∑i=1m-2aiu'(ξi), where D0+α denotes the standard Riemann-Liouville fractional derivative, f:[0,1]×[0,∞)→[0,∞) is a continuous function, ai≥0 for i=1,2,…,m-2, and 0<ξ1<ξ2<⋯<ξm-2<1. Our analysis relies on a fixed point theorem in partially ordered sets. Some examples are also presented to illustrate the main results.
format Article
id doaj-art-13e2847f38ad4f468a9d15d28a17afb2
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-13e2847f38ad4f468a9d15d28a17afb22025-02-03T06:08:19ZengWileyAbstract and Applied Analysis1085-33751687-04092012-01-01201210.1155/2012/826580826580Positive and Nondecreasing Solutions to an m-Point Boundary Value Problem for Nonlinear Fractional Differential EquationI. J. Cabrera0J. Harjani1K. B. Sadarangani2Departamento de Matemáticas, Universidad de Las Palmas de Gran Canaria, Campus de Tafira Baja, 35017 Las Palmas de Gran Canaria, SpainDepartamento de Matemáticas, Universidad de Las Palmas de Gran Canaria, Campus de Tafira Baja, 35017 Las Palmas de Gran Canaria, SpainDepartamento de Matemáticas, Universidad de Las Palmas de Gran Canaria, Campus de Tafira Baja, 35017 Las Palmas de Gran Canaria, SpainWe are concerned with the existence and uniqueness of a positive and nondecreasing solution for the following nonlinear fractional m-point boundary value problem: D0+αu(t)+f(t,u(t))=0,  0<t<1,  2<α≤3,  u(0)=u'(0)=0,  u'(1)=∑i=1m-2aiu'(ξi), where D0+α denotes the standard Riemann-Liouville fractional derivative, f:[0,1]×[0,∞)→[0,∞) is a continuous function, ai≥0 for i=1,2,…,m-2, and 0<ξ1<ξ2<⋯<ξm-2<1. Our analysis relies on a fixed point theorem in partially ordered sets. Some examples are also presented to illustrate the main results.http://dx.doi.org/10.1155/2012/826580
spellingShingle I. J. Cabrera
J. Harjani
K. B. Sadarangani
Positive and Nondecreasing Solutions to an m-Point Boundary Value Problem for Nonlinear Fractional Differential Equation
Abstract and Applied Analysis
title Positive and Nondecreasing Solutions to an m-Point Boundary Value Problem for Nonlinear Fractional Differential Equation
title_full Positive and Nondecreasing Solutions to an m-Point Boundary Value Problem for Nonlinear Fractional Differential Equation
title_fullStr Positive and Nondecreasing Solutions to an m-Point Boundary Value Problem for Nonlinear Fractional Differential Equation
title_full_unstemmed Positive and Nondecreasing Solutions to an m-Point Boundary Value Problem for Nonlinear Fractional Differential Equation
title_short Positive and Nondecreasing Solutions to an m-Point Boundary Value Problem for Nonlinear Fractional Differential Equation
title_sort positive and nondecreasing solutions to an m point boundary value problem for nonlinear fractional differential equation
url http://dx.doi.org/10.1155/2012/826580
work_keys_str_mv AT ijcabrera positiveandnondecreasingsolutionstoanmpointboundaryvalueproblemfornonlinearfractionaldifferentialequation
AT jharjani positiveandnondecreasingsolutionstoanmpointboundaryvalueproblemfornonlinearfractionaldifferentialequation
AT kbsadarangani positiveandnondecreasingsolutionstoanmpointboundaryvalueproblemfornonlinearfractionaldifferentialequation