Research on Nonpoint Source Pollution Assessment Method in Data Sparse Regions: A Case Study of Xichong River Basin, China

The NPS pollution is difficult to manage and control due to its complicated generation and formation mechanism, especially in the data sparse area. Thus the ECM and BTOPMC were, respectively, adopted to develop an easy and practical assessment method, and a comparison between the outputs of them is...

Full description

Saved in:
Bibliographic Details
Main Authors: Xing Liu, Donglong Li, Hongbo Zhang, Shixiang Cai, Xiaodong Li, Tianqi Ao
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Advances in Meteorology
Online Access:http://dx.doi.org/10.1155/2015/519671
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The NPS pollution is difficult to manage and control due to its complicated generation and formation mechanism, especially in the data sparse area. Thus the ECM and BTOPMC were, respectively, adopted to develop an easy and practical assessment method, and a comparison between the outputs of them is then conducted in this paper. The literature survey and field data were acquired to confirm the export coefficients of the ECM, and the loads of TN and TP were statistically analyzed in the study area. Based on hydrological similarity, runoff data from nearby gauged sites were pooled to compensate for the lack of at-site data and the water quality submodel of BTOPMC was then applied to simulate the monthly pollutant fluxes in the two sections from 2010 to 2012. The results showed agricultural fertilizer, rural sewage, and livestock and poultry sewage were the main pollution sources, and under the consideration of self-purification capacity of river, the outputs of the two models were almost identical. The proposed method with a main thought of combining and comparing an empirical model and a mechanistic model can assess the water quality conditions in the study area scientifically, which indicated it has a good potential for popularization in other regions.
ISSN:1687-9309
1687-9317