In-pixel foreground and contrast enhancement circuits with customizable mapping

Abstract This paper presents an in-pixel contrast enhancement circuit that performs image processing directly within the pixel circuit. The circuit leverages HyperFET, a hybrid device combining a MOSFET and a phase transition material (PTM), to enhance performance. It can be tuned for different mode...

Full description

Saved in:
Bibliographic Details
Main Authors: Md Rahatul Islam Udoy, Md Mazharul Islam, Elijah Johnson, Ahmedullah Aziz
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-87965-x
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract This paper presents an in-pixel contrast enhancement circuit that performs image processing directly within the pixel circuit. The circuit leverages HyperFET, a hybrid device combining a MOSFET and a phase transition material (PTM), to enhance performance. It can be tuned for different modes of operation. In foreground enhancement mode, it suppresses low-intensity background pixels to nearly zero, isolating the foreground for better object visibility. In contrast enhancement mode, it improves overall image contrast. The contrast enhancement function is customizable both during the design phase and in real-time, allowing the circuit to adapt to specific applications and varying lighting conditions. A model of the designed pixel circuit is developed and applied to a full pixel array, demonstrating significant improvements in image quality. Simulations performed in HSPICE show a nearly 6x increase in Michelson Contrast Ratio (CR) in the foreground enhancement mode. Furthermore, process variation and Signal-to-Noise Ratio (SNR) analysis has been conducted to evaluate the robustness of the design under manufacturing variations. The simulation results indicate its potential for real-time, adaptive contrast enhancement across various imaging environments.
ISSN:2045-2322