The Characteristic Properties of the Minimal Lp-Mean Width
Giannopoulos proved that a smooth convex body K has minimal mean width position if and only if the measure hK(u)σ(du), supported on Sn-1, is isotropic. Further, Yuan and Leng extended the minimal mean width to the minimal Lp-mean width and characterized the minimal position of convex bodies in terms...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2017-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2017/2943073 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Giannopoulos proved that a smooth convex body K has minimal mean width position if and only if the measure hK(u)σ(du), supported on Sn-1, is isotropic. Further, Yuan and Leng extended the minimal mean width to the minimal Lp-mean width and characterized the minimal position of convex bodies in terms of isotropicity of a suitable measure. In this paper, we study the minimal Lp-mean width of convex bodies and prove the existence and uniqueness of the minimal Lp-mean width in its SL(n) images. In addition, we establish a characterization of the minimal Lp-mean width, conclude the average Mp(K) with a variation of the minimal Lp-mean width position, and give the condition for the minimum position of Mp(K). |
---|---|
ISSN: | 2314-8896 2314-8888 |