A Moving Source Localization Method for Distributed Passive Sensor Using TDOA and FDOA Measurements
The conventional moving source localization methods are based on centralized sensors. This paper presents a moving source localization method for distributed passive sensors using TDOA and FDOA measurements. The novel method firstly uses the steepest descent algorithm to obtain a proper initial valu...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2016-01-01
|
Series: | International Journal of Antennas and Propagation |
Online Access: | http://dx.doi.org/10.1155/2016/8625039 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The conventional moving source localization methods are based on centralized sensors. This paper presents a moving source localization method for distributed passive sensors using TDOA and FDOA measurements. The novel method firstly uses the steepest descent algorithm to obtain a proper initial value of source position and velocity. Then, the coarse location estimation is obtained by maximum likelihood estimation (MLE). Finally, more accurate location estimation is achieved by subtracting theoretical bias, which is approximated by the actual bias using the estimated source location and noisy data measurement. Both theoretical analysis and simulations show that the theoretical bias always meets the actual bias when the noise level is small, and the proposed method can reduce the bias effectively while keeping the same root mean square error (RMSE) with the original MLE and Taylor-series method. Meanwhile, it is less sensitive to the initial guess and attains the CRLB under Gaussian TDOA and FDOA noise at a moderate noise level before the thresholding effect occurs. |
---|---|
ISSN: | 1687-5869 1687-5877 |