On the Exact Solutions of Two (3+1)-Dimensional Nonlinear Differential Equations
In this article, exact solutions of two (3+1)-dimensional nonlinear differential equations are derived by using the complex method. We change the (3+1)-dimensional B-type Kadomtsev-Petviashvili (BKP) equation and generalized shallow water (gSW) equation into the complex differential equations by app...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2020/5740310 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, exact solutions of two (3+1)-dimensional nonlinear differential equations are derived by using the complex method. We change the (3+1)-dimensional B-type Kadomtsev-Petviashvili (BKP) equation and generalized shallow water (gSW) equation into the complex differential equations by applying traveling wave transform and show that meromorphic solutions of these complex differential equations belong to class W, and then, we get exact solutions of these two (3+1)-dimensional equations. |
---|---|
ISSN: | 2314-8896 2314-8888 |