Strong boundedness of analytic functions in tubes
Certain classes of analytic functions in tube domains TC=ℝn+iC in n-dimensional complex space, where C is an open connected cone in ℝn, are studied. We show that the functions have a boundedness property in the strong topology of the space of tempered distributions g′. We further give a direct proof...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1979-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171279000028 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Certain classes of analytic functions in tube domains TC=ℝn+iC in n-dimensional complex space, where C is an open connected cone in ℝn, are studied. We show that the functions have a boundedness property in the strong topology of the space of tempered distributions g′. We further give a direct proof that each analytic function attains the Fourier transform of its spectral function as distributional boundary value in the strong (and weak) topology of g′. |
---|---|
ISSN: | 0161-1712 1687-0425 |