Commutativity of one sided s-unital rings through a Streb's result

The main theorem proved in the present paper states as follows Let m, k, n and s be fixed non-negative integers such that k and n are not simultaneously equal to 1 and R be a left (resp right) s-unital ring satisfying [(xmyk)n−xsy,x]=0 (resp [(xmyk)n−yxs,x]=0) Then R is commutative. Further commutat...

Full description

Saved in:
Bibliographic Details
Main Authors: Murtaza A. Quadri, V. W. Jacob, M. Ashraf
Format: Article
Language:English
Published: Wiley 1997-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171297000367
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main theorem proved in the present paper states as follows Let m, k, n and s be fixed non-negative integers such that k and n are not simultaneously equal to 1 and R be a left (resp right) s-unital ring satisfying [(xmyk)n−xsy,x]=0 (resp [(xmyk)n−yxs,x]=0) Then R is commutative. Further commutativity of left s-unital rings satisfying the condition xt[xm,y]−yr[x,f(y)]xs=0 where f(t)∈t2Z[t] and m>0,t,r and s are fixed non-negative integers, has been investigated Finally, we extend these results to the case when integral exponents in the underlying conditions are no longer fixed, rather they depend on the pair of ring elements x and y for their values. These results generalize a number of commutativity theorems established recently.
ISSN:0161-1712
1687-0425