Zero-sum partition theorems for graphs

Let q=pn be a power of an odd prime p. We show that the vertices of every graph G can be partitioned into t(q) classes V(G)=⋃t=1t(q)Vi such that the number of edges in any induced subgraph 〈Vi〉 is divisible by q, where t(q)≤32(q−1)−(2(q−1)−1)124+98, and if q=2n, then t(q)=2q−1.

Saved in:
Bibliographic Details
Main Authors: Y. Caro, I. Krasikov, Y. Roditty
Format: Article
Language:English
Published: Wiley 1994-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171294000992
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832563616844349440
author Y. Caro
I. Krasikov
Y. Roditty
author_facet Y. Caro
I. Krasikov
Y. Roditty
author_sort Y. Caro
collection DOAJ
description Let q=pn be a power of an odd prime p. We show that the vertices of every graph G can be partitioned into t(q) classes V(G)=⋃t=1t(q)Vi such that the number of edges in any induced subgraph 〈Vi〉 is divisible by q, where t(q)≤32(q−1)−(2(q−1)−1)124+98, and if q=2n, then t(q)=2q−1.
format Article
id doaj-art-12595769eaf840a88183e7452bc104bb
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1994-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-12595769eaf840a88183e7452bc104bb2025-02-03T01:12:58ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251994-01-0117469770210.1155/S0161171294000992Zero-sum partition theorems for graphsY. Caro0I. Krasikov1Y. Roditty2Department of Mathematics, Haifa University, Oranim, IsraelSchool of Mathematics, Tel-Aviv University, Ramat Aviv, IsraelSchool of Mathematics, Tel-Aviv University, Ramat Aviv, IsraelLet q=pn be a power of an odd prime p. We show that the vertices of every graph G can be partitioned into t(q) classes V(G)=⋃t=1t(q)Vi such that the number of edges in any induced subgraph 〈Vi〉 is divisible by q, where t(q)≤32(q−1)−(2(q−1)−1)124+98, and if q=2n, then t(q)=2q−1.http://dx.doi.org/10.1155/S0161171294000992zero-sumpartitionclique-number.
spellingShingle Y. Caro
I. Krasikov
Y. Roditty
Zero-sum partition theorems for graphs
International Journal of Mathematics and Mathematical Sciences
zero-sum
partition
clique-number.
title Zero-sum partition theorems for graphs
title_full Zero-sum partition theorems for graphs
title_fullStr Zero-sum partition theorems for graphs
title_full_unstemmed Zero-sum partition theorems for graphs
title_short Zero-sum partition theorems for graphs
title_sort zero sum partition theorems for graphs
topic zero-sum
partition
clique-number.
url http://dx.doi.org/10.1155/S0161171294000992
work_keys_str_mv AT ycaro zerosumpartitiontheoremsforgraphs
AT ikrasikov zerosumpartitiontheoremsforgraphs
AT yroditty zerosumpartitiontheoremsforgraphs