Low-Temperature Flow Electrolysis for Efficient Trichloromethylation Aided by Electrogenerated Base
This study introduces a novel low-temperature electrochemical flow reactor for the efficient trichloromethylation of benzaldehyde using electrogenerated bases (EGBs). The setup achieved precise temperature control by leveraging a Peltier-cooled system and a divided flow reactor with carbon-felt elec...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
The Electrochemical Society of Japan
2025-01-01
|
Series: | Electrochemistry |
Subjects: | |
Online Access: | https://www.jstage.jst.go.jp/article/electrochemistry/93/1/93_24-00117/_html/-char/en |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study introduces a novel low-temperature electrochemical flow reactor for the efficient trichloromethylation of benzaldehyde using electrogenerated bases (EGBs). The setup achieved precise temperature control by leveraging a Peltier-cooled system and a divided flow reactor with carbon-felt electrodes without requiring external cooling baths. Optimization of reaction parameters, including flow rate, temperature, and charge passed, resulted in a maximum yield of 67 % for 2,2,2-trichloro-1-phenylethanol, demonstrating significantly enhanced stability and reactivity of EGBs. This system exhibits a productivity of 1.01 mmol h−1, which is 6.7 times higher than that of a prior microflow reactor approach, and successfully scales up to reactions involving 5 mmol of substrate. Cooling was identified as a critical factor in stabilizing the reactive intermediates, while further experiments confirmed the inefficacy of external cooling components alone. This robust and scalable reactor design highlights the potential for advancing low-temperature electrochemical synthesis and unlocking new reaction pathways. |
---|---|
ISSN: | 2186-2451 |