Enhancing Urban Understanding Through Fine-Grained Segmentation of Very-High-Resolution Aerial Imagery

Despite the growing availability of very-high-resolution (VHR) remote sensing imagery, extracting fine-grained urban features and materials remains a complex task. Land use/land cover (LULC) maps generated from satellite imagery often fall short in providing the resolution needed for detailed urban...

Full description

Saved in:
Bibliographic Details
Main Authors: Umamaheswaran Raman Kumar, Toon Goedemé, Patrick Vandewalle
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/10/1771
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Despite the growing availability of very-high-resolution (VHR) remote sensing imagery, extracting fine-grained urban features and materials remains a complex task. Land use/land cover (LULC) maps generated from satellite imagery often fall short in providing the resolution needed for detailed urban studies. While hyperspectral imagery offers rich spectral information ideal for material classification, its complex acquisition process limits its use on aerial platforms such as manned aircraft and unmanned aerial vehicles (UAVs), reducing its feasibility for large-scale urban mapping. This study explores the potential of using only RGB and LiDAR data from VHR aerial imagery as an alternative for urban material classification. We introduce an end-to-end workflow that leverages a multi-head segmentation network to jointly classify roof and ground materials while also segmenting individual roof components. The workflow includes a multi-offset self-ensemble inference strategy optimized for aerial data and a post-processing step based on digital elevation models (DEMs). In addition, we present a systematic method for extracting roof parts as polygons enriched with material attributes. The study is conducted on six cities in Flanders, Belgium, covering 18 material classes—including rare categories such as green roofs, wood, and glass. The results show a 9.88% improvement in mean intersection over union (mIOU) for building and ground segmentation, and a 3.66% increase in mIOU for material segmentation compared to a baseline pyramid attention network (PAN). These findings demonstrate the potential of RGB and LiDAR data for high-resolution material segmentation in urban analysis.
ISSN:2072-4292