A Deep Neural Network-Based Fault Detection Scheme for Aircraft IMU Sensors

A new fault detection scheme for aircraft Inertial Measurement Unit (IMU) sensors is developed in this paper. This scheme adopts a deep neural network with a CNN-LSTM-fusion architecture (CNN: convolution neural network; LSTM: long short-term memory). The fault detection network (FDN) developed in t...

Full description

Saved in:
Bibliographic Details
Main Authors: Yiming Zhang, Hang Zhao, Jinyi Ma, Yunmei Zhao, Yiqun Dong, Jianliang Ai
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:International Journal of Aerospace Engineering
Online Access:http://dx.doi.org/10.1155/2021/3936826
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new fault detection scheme for aircraft Inertial Measurement Unit (IMU) sensors is developed in this paper. This scheme adopts a deep neural network with a CNN-LSTM-fusion architecture (CNN: convolution neural network; LSTM: long short-term memory). The fault detection network (FDN) developed in this paper is irrelative to aircraft model or flight condition. Flight data is reformed into a 2D format for FDN input and is mapped via the net to fault cases directly. We simulate different aircrafts with various flight conditions and separate them into training and testing sets. Part of the aircrafts and flight conditions appears only in the testing set to validate robustness and scalability of the FDN. Different architectures of FDN are studied, and an optimized architecture is obtained via ablation studies. An average detecting accuracy of 94.5% on 20 different cases is achieved.
ISSN:1687-5966
1687-5974