Research on Mechanical Fault Diagnosis Scheme Based on Improved Wavelet Total Variation Denoising

Wavelet analysis is a powerful tool for signal processing and mechanical equipment fault diagnosis due to the advantages of multiresolution analysis and excellent local characteristics in time-frequency domain. Wavelet total variation (WATV) was recently developed based on the traditional wavelet an...

Full description

Saved in:
Bibliographic Details
Main Authors: Wentao He, Cancan Yi, Yourong Li, Han Xiao
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2016/3151802
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wavelet analysis is a powerful tool for signal processing and mechanical equipment fault diagnosis due to the advantages of multiresolution analysis and excellent local characteristics in time-frequency domain. Wavelet total variation (WATV) was recently developed based on the traditional wavelet analysis method, which combines the advantages of wavelet-domain sparsity and total variation (TV) regularization. In order to guarantee the sparsity and the convexity of the total objective function, nonconvex penalty function is chosen as a new wavelet penalty function in WATV. The actual noise reduction effect of WATV method largely depends on the estimation of the noise signal variance. In this paper, an improved wavelet total variation (IWATV) denoising method was introduced. The local variance analysis on wavelet coefficients obtained from the wavelet decomposition of noisy signals is employed to estimate the noise variance so as to provide a scientific evaluation index. Through the analysis of the numerical simulation signal and real-word failure data, the results demonstrated that the IWATV method has obvious advantages over the traditional wavelet threshold denoising and total variation denoising method in the mechanical fault diagnose.
ISSN:1070-9622
1875-9203