Commuting Toeplitz and Hankel Operators on Harmonic Dirichlet Spaces

On the harmonic Dirichlet space of the unit disk, the commutativity of Toeplitz and Hankel operators is studied. We obtain characterizations of commuting Toeplitz and Hankel operators and essentially commuting (semicommuting) Toeplitz and Hankel operators with general symbols.

Saved in:
Bibliographic Details
Main Authors: Qian Ding, Yong Chen, Yufeng Lu
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2017/9627109
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832550330532888576
author Qian Ding
Yong Chen
Yufeng Lu
author_facet Qian Ding
Yong Chen
Yufeng Lu
author_sort Qian Ding
collection DOAJ
description On the harmonic Dirichlet space of the unit disk, the commutativity of Toeplitz and Hankel operators is studied. We obtain characterizations of commuting Toeplitz and Hankel operators and essentially commuting (semicommuting) Toeplitz and Hankel operators with general symbols.
format Article
id doaj-art-1178a743f8e74a78ba90ffc816ea3b20
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2017-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-1178a743f8e74a78ba90ffc816ea3b202025-02-03T06:06:56ZengWileyJournal of Function Spaces2314-88962314-88882017-01-01201710.1155/2017/96271099627109Commuting Toeplitz and Hankel Operators on Harmonic Dirichlet SpacesQian Ding0Yong Chen1Yufeng Lu2School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning 116024, ChinaDepartment of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, ChinaSchool of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning 116024, ChinaOn the harmonic Dirichlet space of the unit disk, the commutativity of Toeplitz and Hankel operators is studied. We obtain characterizations of commuting Toeplitz and Hankel operators and essentially commuting (semicommuting) Toeplitz and Hankel operators with general symbols.http://dx.doi.org/10.1155/2017/9627109
spellingShingle Qian Ding
Yong Chen
Yufeng Lu
Commuting Toeplitz and Hankel Operators on Harmonic Dirichlet Spaces
Journal of Function Spaces
title Commuting Toeplitz and Hankel Operators on Harmonic Dirichlet Spaces
title_full Commuting Toeplitz and Hankel Operators on Harmonic Dirichlet Spaces
title_fullStr Commuting Toeplitz and Hankel Operators on Harmonic Dirichlet Spaces
title_full_unstemmed Commuting Toeplitz and Hankel Operators on Harmonic Dirichlet Spaces
title_short Commuting Toeplitz and Hankel Operators on Harmonic Dirichlet Spaces
title_sort commuting toeplitz and hankel operators on harmonic dirichlet spaces
url http://dx.doi.org/10.1155/2017/9627109
work_keys_str_mv AT qianding commutingtoeplitzandhankeloperatorsonharmonicdirichletspaces
AT yongchen commutingtoeplitzandhankeloperatorsonharmonicdirichletspaces
AT yufenglu commutingtoeplitzandhankeloperatorsonharmonicdirichletspaces