Commuting Toeplitz and Hankel Operators on Harmonic Dirichlet Spaces
On the harmonic Dirichlet space of the unit disk, the commutativity of Toeplitz and Hankel operators is studied. We obtain characterizations of commuting Toeplitz and Hankel operators and essentially commuting (semicommuting) Toeplitz and Hankel operators with general symbols.
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2017-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2017/9627109 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832550330532888576 |
---|---|
author | Qian Ding Yong Chen Yufeng Lu |
author_facet | Qian Ding Yong Chen Yufeng Lu |
author_sort | Qian Ding |
collection | DOAJ |
description | On the harmonic Dirichlet space of the unit disk, the commutativity of Toeplitz and Hankel operators is studied. We obtain characterizations of commuting Toeplitz and Hankel operators and essentially commuting (semicommuting) Toeplitz and Hankel operators with general symbols. |
format | Article |
id | doaj-art-1178a743f8e74a78ba90ffc816ea3b20 |
institution | Kabale University |
issn | 2314-8896 2314-8888 |
language | English |
publishDate | 2017-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Function Spaces |
spelling | doaj-art-1178a743f8e74a78ba90ffc816ea3b202025-02-03T06:06:56ZengWileyJournal of Function Spaces2314-88962314-88882017-01-01201710.1155/2017/96271099627109Commuting Toeplitz and Hankel Operators on Harmonic Dirichlet SpacesQian Ding0Yong Chen1Yufeng Lu2School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning 116024, ChinaDepartment of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, ChinaSchool of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning 116024, ChinaOn the harmonic Dirichlet space of the unit disk, the commutativity of Toeplitz and Hankel operators is studied. We obtain characterizations of commuting Toeplitz and Hankel operators and essentially commuting (semicommuting) Toeplitz and Hankel operators with general symbols.http://dx.doi.org/10.1155/2017/9627109 |
spellingShingle | Qian Ding Yong Chen Yufeng Lu Commuting Toeplitz and Hankel Operators on Harmonic Dirichlet Spaces Journal of Function Spaces |
title | Commuting Toeplitz and Hankel Operators on Harmonic Dirichlet Spaces |
title_full | Commuting Toeplitz and Hankel Operators on Harmonic Dirichlet Spaces |
title_fullStr | Commuting Toeplitz and Hankel Operators on Harmonic Dirichlet Spaces |
title_full_unstemmed | Commuting Toeplitz and Hankel Operators on Harmonic Dirichlet Spaces |
title_short | Commuting Toeplitz and Hankel Operators on Harmonic Dirichlet Spaces |
title_sort | commuting toeplitz and hankel operators on harmonic dirichlet spaces |
url | http://dx.doi.org/10.1155/2017/9627109 |
work_keys_str_mv | AT qianding commutingtoeplitzandhankeloperatorsonharmonicdirichletspaces AT yongchen commutingtoeplitzandhankeloperatorsonharmonicdirichletspaces AT yufenglu commutingtoeplitzandhankeloperatorsonharmonicdirichletspaces |