The Effect of Channel Layer Thickness on the Performance of GaN HEMTs for RF Applications
In this paper, AlGaN/GaN high electron mobility transistors (HEMTs) with different thicknesses of unintentional doping GaN (UID-GaN) channels were compared and discussed. In order to discuss the effect of different thicknesses of the UID-GaN layer on iron-doped tails, both AlGaN/GaN HEMTs share the...
Saved in:
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-12-01
|
Series: | Micromachines |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-666X/16/1/1 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, AlGaN/GaN high electron mobility transistors (HEMTs) with different thicknesses of unintentional doping GaN (UID-GaN) channels were compared and discussed. In order to discuss the effect of different thicknesses of the UID-GaN layer on iron-doped tails, both AlGaN/GaN HEMTs share the same 200 nm GaN buffer layer with an Fe-doped concentration of 8 × 10<sup>17</sup> cm<sup>−3</sup>. Due to the different thicknesses of the UID-GaN layer, the concentration of Fe trails reaching the two-dimensional electron gas (2DEG) varies. The breakdown voltage (Vbr) increases with the high concentration of Fe-doped in GaN buffer layer. However, the mobility of the low concentration of the Fe-doped tail is higher than that of the high concentration of the Fe-doped tail. Therefore, the effect of different thicknesses of UID-GaN on the DC and radio frequency (RF) performance of the device needs to be verified. It provides a reference to the epitaxial design for high-performance GaN HEMTs. |
---|---|
ISSN: | 2072-666X |