A 3D Face Recognition Algorithm Directly Applied to Point Clouds
Face recognition technology, despite its widespread use in various applications, still faces challenges related to occlusions, pose variations, and expression changes. Three-dimensional face recognition with depth information, particularly using point cloud-based networks, has shown effectiveness in...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-01-01
|
| Series: | Biomimetics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2313-7673/10/2/70 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Face recognition technology, despite its widespread use in various applications, still faces challenges related to occlusions, pose variations, and expression changes. Three-dimensional face recognition with depth information, particularly using point cloud-based networks, has shown effectiveness in overcoming these challenges. However, due to the limited extent of extensive 3D facial data and the non-rigid nature of facial structures, extracting distinct facial representations directly from point clouds remains challenging. To address this, our research proposes two key approaches. Firstly, we introduce a learning framework guided by a small amount of real face data based on morphable models with Gaussian processes. This system uses a novel method for generating large-scale virtual face scans, addressing the scarcity of 3D data. Secondly, we present a dual-branch network that directly extracts non-rigid facial features from point clouds, using kernel point convolution (KPConv) as its foundation. A local neighborhood adaptive feature learning module is introduced and employs context sampling technology, hierarchically downsampling feature-sensitive points critical for deep transfer and aggregation of discriminative facial features, to enhance the extraction of discriminative facial features. Notably, our training strategy combines large-scale face scanning data with 967 real face data from the FRGC v2.0 subset, demonstrating the effectiveness of guiding with a small amount of real face data. Experiments on the FRGC v2.0 dataset and the Bosphorus dataset demonstrate the effectiveness and potential of our method. |
|---|---|
| ISSN: | 2313-7673 |