Variance Swap Pricing under Markov-Modulated Jump-Diffusion Model

This paper investigates the pricing of discretely sampled variance swaps under a Markov regime-switching jump-diffusion model. The jump diffusion, as well as other parameters of the underlying stock’s dynamics, is modulated by a Markov chain representing different states of the market. A semi-closed...

Full description

Saved in:
Bibliographic Details
Main Authors: Shican Liu, Yu Yang, Hu Zhang, Yonghong Wu
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2021/9814605
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates the pricing of discretely sampled variance swaps under a Markov regime-switching jump-diffusion model. The jump diffusion, as well as other parameters of the underlying stock’s dynamics, is modulated by a Markov chain representing different states of the market. A semi-closed-form pricing formula is derived by applying the generalized Fourier transform method. The counterpart pricing formula for a variance swap with continuous sampling times is also derived and compared with the discrete price to show the improvement of accuracy in our solution. Moreover, a semi-Monte-Carlo simulation is also presented in comparison with the two semi-closed-form pricing formulas. Finally, the effect of incorporating jump and regime switching on the strike price is investigated via numerical analysis.
ISSN:1026-0226
1607-887X