Alternating 2D and 3D culture reduces cell size and extends the lifespan of placenta-derived mesenchymal stem cells

BackgroundMesenchymal stem cells (MSCs) hold great promise for treating a variety of human diseases; however, their clinical translation is hindered by challenges in large‐scale expansion while preserving therapeutic potency and maintaining small cell size. Conventional 2D culture on rigid substrate...

Full description

Saved in:
Bibliographic Details
Main Authors: Ying Pan, Li Han, Yakun Yang, Xinran Wu, Aijun Wang, Liangqi Xie, Wuqiang Zhu, Shue Wang, Yuguo Lei
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-08-01
Series:Frontiers in Bioengineering and Biotechnology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fbioe.2025.1632810/full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:BackgroundMesenchymal stem cells (MSCs) hold great promise for treating a variety of human diseases; however, their clinical translation is hindered by challenges in large‐scale expansion while preserving therapeutic potency and maintaining small cell size. Conventional 2D culture on rigid substrates induces MSC senescence and enlargement, compromising their function and biodistribution.MethodsWe present an alternating 2D/3D culture strategy that combines adherent monolayer expansion with transient spheroid formation to mitigate these limitations. Placenta‐derived MSCs were cultured under optimized spheroid conditions, with extracellular matrix supplementation and chemically defined media to enhance viability. To address scalability, we developed RGD-functionalized alginate hydrogel tubes (AlgTubes) that enable dynamic transitions between adherent and spheroid states for continuous culture.ResultsSpheroid culture significantly reduced cell size and enhanced immunomodulatory function. The alternating 2D/3D protocol slowed MSC enlargement and senescence over multiple passages while preserving anti-inflammatory activity. Extracellular matrix supplementation and chemically defined media further improved cell viability. AlgTubes successfully supported the alternating culture strategy in a continuous and scalable format.Conclusions The alternating 2D/3D culture system effectively overcomes limitations of conventional MSC expansion by mitigating enlargement, delaying senescence, and preserving both proliferative capacity and immunoregulatory potency. Combined with AlgTube technology, this work demonstrates a promising strategy for MSC manufacturing
ISSN:2296-4185