A Comprehensive Review of Artificial Intelligence (AI) Applications in Pulmonary Hypertension (PH)

<i>Background:</i> Pulmonary hypertension (PH) is a complex condition associated with significant morbidity and mortality. Traditional diagnostic and management approaches for PH often face limitations, leading to delays in diagnosis and potentially suboptimal treatment outcomes. Artific...

Full description

Saved in:
Bibliographic Details
Main Authors: Sogol Attaripour Esfahani, Nima Baba Ali, Juan M. Farina, Isabel G. Scalia, Milagros Pereyra, Mohammed Tiseer Abbas, Niloofar Javadi, Nadera N. Bismee, Fatmaelzahraa E. Abdelfattah, Kamal Awad, Omar H. Ibrahim, Hesham Sheashaa, Timothy Barry, Robert L. Scott, Chadi Ayoub, Reza Arsanjani
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Medicina
Subjects:
Online Access:https://www.mdpi.com/1648-9144/61/1/85
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832587971629416448
author Sogol Attaripour Esfahani
Nima Baba Ali
Juan M. Farina
Isabel G. Scalia
Milagros Pereyra
Mohammed Tiseer Abbas
Niloofar Javadi
Nadera N. Bismee
Fatmaelzahraa E. Abdelfattah
Kamal Awad
Omar H. Ibrahim
Hesham Sheashaa
Timothy Barry
Robert L. Scott
Chadi Ayoub
Reza Arsanjani
author_facet Sogol Attaripour Esfahani
Nima Baba Ali
Juan M. Farina
Isabel G. Scalia
Milagros Pereyra
Mohammed Tiseer Abbas
Niloofar Javadi
Nadera N. Bismee
Fatmaelzahraa E. Abdelfattah
Kamal Awad
Omar H. Ibrahim
Hesham Sheashaa
Timothy Barry
Robert L. Scott
Chadi Ayoub
Reza Arsanjani
author_sort Sogol Attaripour Esfahani
collection DOAJ
description <i>Background:</i> Pulmonary hypertension (PH) is a complex condition associated with significant morbidity and mortality. Traditional diagnostic and management approaches for PH often face limitations, leading to delays in diagnosis and potentially suboptimal treatment outcomes. Artificial intelligence (AI), encompassing machine learning (ML) and deep learning (DL) offers a transformative approach to PH care. <i>Materials and Methods:</i> We systematically searched PubMed, Scopus, and Web of Science for original studies on AI applications in PH, using predefined keywords. Out of more than 500 initial articles, 45 relevant studies were selected. Risk of bias was evaluated using PROBAST (Prediction model Risk of Bias Assessment Tool). <i>Results:</i> This review examines the potential applications of AI in PH, focusing on its role in enhancing diagnosis, disease classification, and prognostication. We discuss how AI-powered analysis of medical data can improve the accuracy and efficiency of detecting PH. Furthermore, we explore the potential of AI in risk stratification, leading to treatment optimization for PH. <i>Conclusions:</i> While acknowledging the existing challenges and limitations and the need for continued exploration and refinement of AI-driven tools, this review highlights the significant promise of AI in revolutionizing PH management to improve patient outcomes.
format Article
id doaj-art-1066e8fbe0bf4e94a17a7229250fc009
institution Kabale University
issn 1010-660X
1648-9144
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Medicina
spelling doaj-art-1066e8fbe0bf4e94a17a7229250fc0092025-01-24T13:40:31ZengMDPI AGMedicina1010-660X1648-91442025-01-016118510.3390/medicina61010085A Comprehensive Review of Artificial Intelligence (AI) Applications in Pulmonary Hypertension (PH)Sogol Attaripour Esfahani0Nima Baba Ali1Juan M. Farina2Isabel G. Scalia3Milagros Pereyra4Mohammed Tiseer Abbas5Niloofar Javadi6Nadera N. Bismee7Fatmaelzahraa E. Abdelfattah8Kamal Awad9Omar H. Ibrahim10Hesham Sheashaa11Timothy Barry12Robert L. Scott13Chadi Ayoub14Reza Arsanjani15Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USADepartment of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USADepartment of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USADepartment of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USADepartment of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USADepartment of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USADepartment of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USADepartment of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USADepartment of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USADepartment of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USADepartment of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USADepartment of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USADepartment of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USADepartment of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USADepartment of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USADepartment of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA<i>Background:</i> Pulmonary hypertension (PH) is a complex condition associated with significant morbidity and mortality. Traditional diagnostic and management approaches for PH often face limitations, leading to delays in diagnosis and potentially suboptimal treatment outcomes. Artificial intelligence (AI), encompassing machine learning (ML) and deep learning (DL) offers a transformative approach to PH care. <i>Materials and Methods:</i> We systematically searched PubMed, Scopus, and Web of Science for original studies on AI applications in PH, using predefined keywords. Out of more than 500 initial articles, 45 relevant studies were selected. Risk of bias was evaluated using PROBAST (Prediction model Risk of Bias Assessment Tool). <i>Results:</i> This review examines the potential applications of AI in PH, focusing on its role in enhancing diagnosis, disease classification, and prognostication. We discuss how AI-powered analysis of medical data can improve the accuracy and efficiency of detecting PH. Furthermore, we explore the potential of AI in risk stratification, leading to treatment optimization for PH. <i>Conclusions:</i> While acknowledging the existing challenges and limitations and the need for continued exploration and refinement of AI-driven tools, this review highlights the significant promise of AI in revolutionizing PH management to improve patient outcomes.https://www.mdpi.com/1648-9144/61/1/85artificial intelligencepulmonary hypertensionmachine learningdeep learningechocardiographycomputed tomography
spellingShingle Sogol Attaripour Esfahani
Nima Baba Ali
Juan M. Farina
Isabel G. Scalia
Milagros Pereyra
Mohammed Tiseer Abbas
Niloofar Javadi
Nadera N. Bismee
Fatmaelzahraa E. Abdelfattah
Kamal Awad
Omar H. Ibrahim
Hesham Sheashaa
Timothy Barry
Robert L. Scott
Chadi Ayoub
Reza Arsanjani
A Comprehensive Review of Artificial Intelligence (AI) Applications in Pulmonary Hypertension (PH)
Medicina
artificial intelligence
pulmonary hypertension
machine learning
deep learning
echocardiography
computed tomography
title A Comprehensive Review of Artificial Intelligence (AI) Applications in Pulmonary Hypertension (PH)
title_full A Comprehensive Review of Artificial Intelligence (AI) Applications in Pulmonary Hypertension (PH)
title_fullStr A Comprehensive Review of Artificial Intelligence (AI) Applications in Pulmonary Hypertension (PH)
title_full_unstemmed A Comprehensive Review of Artificial Intelligence (AI) Applications in Pulmonary Hypertension (PH)
title_short A Comprehensive Review of Artificial Intelligence (AI) Applications in Pulmonary Hypertension (PH)
title_sort comprehensive review of artificial intelligence ai applications in pulmonary hypertension ph
topic artificial intelligence
pulmonary hypertension
machine learning
deep learning
echocardiography
computed tomography
url https://www.mdpi.com/1648-9144/61/1/85
work_keys_str_mv AT sogolattaripouresfahani acomprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT nimababaali acomprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT juanmfarina acomprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT isabelgscalia acomprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT milagrospereyra acomprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT mohammedtiseerabbas acomprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT niloofarjavadi acomprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT naderanbismee acomprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT fatmaelzahraaeabdelfattah acomprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT kamalawad acomprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT omarhibrahim acomprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT heshamsheashaa acomprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT timothybarry acomprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT robertlscott acomprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT chadiayoub acomprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT rezaarsanjani acomprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT sogolattaripouresfahani comprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT nimababaali comprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT juanmfarina comprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT isabelgscalia comprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT milagrospereyra comprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT mohammedtiseerabbas comprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT niloofarjavadi comprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT naderanbismee comprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT fatmaelzahraaeabdelfattah comprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT kamalawad comprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT omarhibrahim comprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT heshamsheashaa comprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT timothybarry comprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT robertlscott comprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT chadiayoub comprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph
AT rezaarsanjani comprehensivereviewofartificialintelligenceaiapplicationsinpulmonaryhypertensionph