Opposing Roles of Leptin and Ghrelin in the Equine Corpus Luteum Regulation: An In Vitro Study

Metabolic hormones have been associated with reproductive function modulation. Thus, the aim of this study was: (i) to characterize the immunolocalization, mRNA and protein levels of leptin (LEP), Ghrelin (GHR) and respective receptors LEPR and Ghr-R1A, throughout luteal phase; and (ii) to evaluate...

Full description

Saved in:
Bibliographic Details
Main Authors: António Galvão, Angela Tramontano, Maria Rosa Rebordão, Ana Amaral, Pedro Pinto Bravo, Anna Szóstek, Dariusz Skarzynski, Antonio Mollo, Graça Ferreira-Dias
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Mediators of Inflammation
Online Access:http://dx.doi.org/10.1155/2014/682193
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metabolic hormones have been associated with reproductive function modulation. Thus, the aim of this study was: (i) to characterize the immunolocalization, mRNA and protein levels of leptin (LEP), Ghrelin (GHR) and respective receptors LEPR and Ghr-R1A, throughout luteal phase; and (ii) to evaluate the role of LEP and GHR on progesterone (P4), prostaglandin (PG) E2 and PGF2α, nitric oxide (nitrite), tumor necrosis factor-α (TNF); macrophage migration inhibitory factor (MIF) secretion, and on angiogenic activity (BAEC proliferation), in equine corpus luteum (CL) from early and mid-luteal stages. LEPR expression was decreased in late CL, while GHR/Ghr-R1A system was increased in the same stage. Regarding secretory activity, GHR decreased P4 in early CL, but increased PGF2α, nitrite and TNF in mid CL. Conversely, LEP increased P4, PGE2, angiogenic activity, MIF, TNF and nitrite during early CL, in a dose-dependent manner. The in vitro effect of LEP on secretory activity was reverted by GHR, when both factors acted together. The present results evidence the presence of LEP and GHR systems in the equine CL. Moreover, we suggest that LEP and GHR play opposing roles in equine CL regulation, with LEP supporting luteal establishment and GHR promoting luteal regression. Finally, a dose-dependent luteotrophic effect of LEP was demonstrated.
ISSN:0962-9351
1466-1861