Delineation of Dynamic Coastal Boundaries in South Africa from Hyper-Temporal Sentinel-2 Imagery

The mapping and monitoring of coastal regions are critical to ensure their sustainable use and viability in the long term. Delineation of coastlines is becoming increasingly important in the light of climate change and rising sea levels. However, many coastlines are highly dynamic; therefore, mono-t...

Full description

Saved in:
Bibliographic Details
Main Authors: Mariel Bessinger, Melanie Lück-Vogel, Andrew Luke Skowno, Ferozah Conrad
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/15/2633
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mapping and monitoring of coastal regions are critical to ensure their sustainable use and viability in the long term. Delineation of coastlines is becoming increasingly important in the light of climate change and rising sea levels. However, many coastlines are highly dynamic; therefore, mono-temporal assessments of coastal ecosystems and coastlines are mere snapshots of limited practical value for space-based planning. Understanding of the spatio-temporal dynamics of coastal ecosystem boundaries is important to inform ecosystem management but also for a meaningful delineation of the high-water mark, which is used as a benchmark for coastal spatial planning in South Africa. This research aimed to use hyper-temporal Sentinel-2 imagery to extract ecological zones on the coast of KwaZulu-Natal, South Africa. A total of 613 images, collected between 2019 and 2023, were classified into four distinct coastal ecological zones—vegetation, bare, surf, and water—using a Random Forest model. Across all classifications, the percentage of each of the four classes’ occurrence per pixel over time was determined. This enabled the identification of ecosystem locations, spatially static ecosystem boundaries, and the occurrence of ecosystem boundaries with a more dynamic location over time, such as the non-permanent vegetation zone of the foredune area as well as the intertidal zone. The overall accuracy of the model was 98.13%, while the Kappa coefficient was 0.975, with user’s and producer’s accuracies ranging between 93.02% and 100%. These results indicate that cloud-based analysis of Sentinel-2 time series holds potential not just for delineating coastal ecosystem boundaries, but also for enhancing the understanding of spatio-temporal dynamics between them, to inform meaningful environmental management, spatial planning, and climate adaptation strategies.
ISSN:2072-4292