New Estimates of q1q2-Ostrowski-Type Inequalities within a Class of n-Polynomial Prevexity of Functions
In this article, we develop a novel framework to study for a new class of preinvex functions depending on arbitrary nonnegative function, which is called n-polynomial preinvex functions. We use the n-polynomial preinvex functions to develop q1q2-analogues of the Ostrowski-type integral inequalities...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2020/3720798 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832550330069417984 |
---|---|
author | Humaira Kalsoom Muhammad Idrees Dumitru Baleanu Yu-Ming Chu |
author_facet | Humaira Kalsoom Muhammad Idrees Dumitru Baleanu Yu-Ming Chu |
author_sort | Humaira Kalsoom |
collection | DOAJ |
description | In this article, we develop a novel framework to study for a new class of preinvex functions depending on arbitrary nonnegative function, which is called n-polynomial preinvex functions. We use the n-polynomial preinvex functions to develop q1q2-analogues of the Ostrowski-type integral inequalities on coordinates. Different features and properties of excitement for quantum calculus have been examined through a systematic way. We are discussing about the suggestions and different results of the quantum inequalities of the Ostrowski-type by inferring a new identity for q1q2-differentiable function. However, the problem has been proven to utilize the obtained identity, we give q1q2-analogues of the Ostrowski-type integrals inequalities which are connected with the n-polynomial preinvex functions on coordinates. Our results are the generalizations of the results in earlier papers. |
format | Article |
id | doaj-art-0ffce2adcc8c40fdaf270db0bba4b5c1 |
institution | Kabale University |
issn | 2314-8896 2314-8888 |
language | English |
publishDate | 2020-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Function Spaces |
spelling | doaj-art-0ffce2adcc8c40fdaf270db0bba4b5c12025-02-03T06:06:54ZengWileyJournal of Function Spaces2314-88962314-88882020-01-01202010.1155/2020/37207983720798New Estimates of q1q2-Ostrowski-Type Inequalities within a Class of n-Polynomial Prevexity of FunctionsHumaira Kalsoom0Muhammad Idrees1Dumitru Baleanu2Yu-Ming Chu3School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, ChinaZhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, ChinaDepartment of Mathematics, Çankaya University, 06530 Ankara, TurkeyDepartment of Mathematics, Huzhou University, Huzhou 313000, ChinaIn this article, we develop a novel framework to study for a new class of preinvex functions depending on arbitrary nonnegative function, which is called n-polynomial preinvex functions. We use the n-polynomial preinvex functions to develop q1q2-analogues of the Ostrowski-type integral inequalities on coordinates. Different features and properties of excitement for quantum calculus have been examined through a systematic way. We are discussing about the suggestions and different results of the quantum inequalities of the Ostrowski-type by inferring a new identity for q1q2-differentiable function. However, the problem has been proven to utilize the obtained identity, we give q1q2-analogues of the Ostrowski-type integrals inequalities which are connected with the n-polynomial preinvex functions on coordinates. Our results are the generalizations of the results in earlier papers.http://dx.doi.org/10.1155/2020/3720798 |
spellingShingle | Humaira Kalsoom Muhammad Idrees Dumitru Baleanu Yu-Ming Chu New Estimates of q1q2-Ostrowski-Type Inequalities within a Class of n-Polynomial Prevexity of Functions Journal of Function Spaces |
title | New Estimates of q1q2-Ostrowski-Type Inequalities within a Class of n-Polynomial Prevexity of Functions |
title_full | New Estimates of q1q2-Ostrowski-Type Inequalities within a Class of n-Polynomial Prevexity of Functions |
title_fullStr | New Estimates of q1q2-Ostrowski-Type Inequalities within a Class of n-Polynomial Prevexity of Functions |
title_full_unstemmed | New Estimates of q1q2-Ostrowski-Type Inequalities within a Class of n-Polynomial Prevexity of Functions |
title_short | New Estimates of q1q2-Ostrowski-Type Inequalities within a Class of n-Polynomial Prevexity of Functions |
title_sort | new estimates of q1q2 ostrowski type inequalities within a class of n polynomial prevexity of functions |
url | http://dx.doi.org/10.1155/2020/3720798 |
work_keys_str_mv | AT humairakalsoom newestimatesofq1q2ostrowskitypeinequalitieswithinaclassofnpolynomialprevexityoffunctions AT muhammadidrees newestimatesofq1q2ostrowskitypeinequalitieswithinaclassofnpolynomialprevexityoffunctions AT dumitrubaleanu newestimatesofq1q2ostrowskitypeinequalitieswithinaclassofnpolynomialprevexityoffunctions AT yumingchu newestimatesofq1q2ostrowskitypeinequalitieswithinaclassofnpolynomialprevexityoffunctions |