New Estimates of q1q2-Ostrowski-Type Inequalities within a Class of n-Polynomial Prevexity of Functions
In this article, we develop a novel framework to study for a new class of preinvex functions depending on arbitrary nonnegative function, which is called n-polynomial preinvex functions. We use the n-polynomial preinvex functions to develop q1q2-analogues of the Ostrowski-type integral inequalities...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2020/3720798 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, we develop a novel framework to study for a new class of preinvex functions depending on arbitrary nonnegative function, which is called n-polynomial preinvex functions. We use the n-polynomial preinvex functions to develop q1q2-analogues of the Ostrowski-type integral inequalities on coordinates. Different features and properties of excitement for quantum calculus have been examined through a systematic way. We are discussing about the suggestions and different results of the quantum inequalities of the Ostrowski-type by inferring a new identity for q1q2-differentiable function. However, the problem has been proven to utilize the obtained identity, we give q1q2-analogues of the Ostrowski-type integrals inequalities which are connected with the n-polynomial preinvex functions on coordinates. Our results are the generalizations of the results in earlier papers. |
---|---|
ISSN: | 2314-8896 2314-8888 |