Effect of TGF-β1-Mediated Exercise Analgesia in Spared Nerve Injury Mice

Peripheral nerve injury leads to severe neuropathic pain. Previous studies have highlighted the beneficial effects of physical exercise on alleviating neuropathic pain. Exercise regulating transforming growth factor-β1 (TGF-β1) can improve several diseases and relieve neuropathic pain induced by per...

Full description

Saved in:
Bibliographic Details
Main Authors: Xinzheng Sun, Chenghao Wang, Junqi Wu, Xiaoke Chen, Hui He
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Neural Plasticity
Online Access:http://dx.doi.org/10.1155/2022/7382327
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Peripheral nerve injury leads to severe neuropathic pain. Previous studies have highlighted the beneficial effects of physical exercise on alleviating neuropathic pain. Exercise regulating transforming growth factor-β1 (TGF-β1) can improve several diseases and relieve neuropathic pain induced by peripheral nerve injury. Here, we investigated whether exercise could alleviate neuropathic pain by modulating TGF-β1 expression. We assessed mechanical and cold pain behavior and conducted molecular evaluation of the spinal cord. We found that spared nerve injury (SNI) led to mechanical and cold allodynia in the hind paw, elevated the expression of latency-associated peptide- (LAP-) TGF-β1, and activated astroglial in the spinal cord. Exercise decreases allodynia, astroglial activation, and LAP-TGF-β1 in SNI mice. Intrathecal injection of a TGF-type I receptor inhibitor attenuated exercise analgesia and enhanced astroglial activation. These findings demonstrate that exercise induces analgesia by promoting TGF-β1 activation and inhibiting astrogliosis. Our study reveals a new underlying mechanism for exercise-attenuated neuropathic pain in the maintenance stage of neuropathic pain after nerve injury.
ISSN:1687-5443