Characterization of the Liquid Fuel Produced from Catalytic Depolymerization of Polymeric Waste Using Batch Reactor

The high rate of generation of plastic waste in the country and the fact that all other means of Municipal Plastic Waste (MPW) management techniques had failed leading to the requirement of efficient and alternative disposal technique-depolymerization. The technique involves heating the polymeric wa...

Full description

Saved in:
Bibliographic Details
Main Author: O. L. Rominiyi, M. A. Akintunde, E. I Bello, L. Lajide, O. M. Ikumapayi, O. T. Laseinde and B. A. Adaramola
Format: Article
Language:English
Published: Technoscience Publications 2024-12-01
Series:Nature Environment and Pollution Technology
Subjects:
Online Access:https://neptjournal.com/upload-images/(47)D-1549.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832593975868915712
author O. L. Rominiyi, M. A. Akintunde, E. I Bello, L. Lajide, O. M. Ikumapayi, O. T. Laseinde and B. A. Adaramola
author_facet O. L. Rominiyi, M. A. Akintunde, E. I Bello, L. Lajide, O. M. Ikumapayi, O. T. Laseinde and B. A. Adaramola
author_sort O. L. Rominiyi, M. A. Akintunde, E. I Bello, L. Lajide, O. M. Ikumapayi, O. T. Laseinde and B. A. Adaramola
collection DOAJ
description The high rate of generation of plastic waste in the country and the fact that all other means of Municipal Plastic Waste (MPW) management techniques had failed leading to the requirement of efficient and alternative disposal technique-depolymerization. The technique involves heating the polymeric waste at an elevated temperature in an inert environment to produce condensable, non-condensable, hydrocarbon and biochar. The plastic waste was collected at the Ilokun dumpsite in Ado-Ekiti, southwest Nigeria. Each component of the waste samples was depolymerized in a batch reactor without the use of a catalyst and with the addition of 10 g of activated carbon (AC) and calcium oxide (CaO) as catalysts. The liquid fuels which were produced between the temperature range of 219 and 232 were blended with standard fuel. Fuel samples with conventional diesel and depolymerized plastic diesel were characterized based on ASTM standards. The results of the proximate and ultimate analysis indicated that percentage moisture content ranges from 0.00-0.18%, volatile matter ranges between 96.66-99.75% and percentage ash content ranges from 0.13-3.03%. Fixed carbon ranges from 0.004-0.31% while the Gross Heating Value (GHV) ranges from 42.66-45.87 MJ/kg. The CHONS analyzer indicated the percentage of carbon, hydrogen, oxygen, nitrogen, and sulfur content range 81.64-85.51%, 12-31-18.04%, 0.00-1.51%, 0.00-0.73%, and 0.10- 0.97% respectively. The results of the physiochemical properties of the samples show that the density, API gravity, Kinematic viscosity and Flash point vary from 0.76-0.83 (g/cm3), 38.98-54.68, 17-2.80 (cm2/s) and 50.0-70.0 (°C) respectively while Cloud point, Pour point, Fire point and Cetane index range from -20-15.0 (°C), -23-7 (°C), 61.0-79.0 (°C) and 38.50-47.0. The pH values of the liquid fuel samples vary from 6.60-3.30. The overall results of the characterization indicated the fuel samples have proximity to the properties of the conventional diesel following the ASTM D975, ASTM D4737, ASTM D1298, ASTM D445, ASTM D2709, and ASTM D482 standards. The depolymerized polymeric waste is sustainable, with a low cost of production. Hence a good substitute as an alternative fuel and means of wealth creation from waste.
format Article
id doaj-art-0fcc19ff958e427d9a121eb04d43a35f
institution Kabale University
issn 0972-6268
2395-3454
language English
publishDate 2024-12-01
publisher Technoscience Publications
record_format Article
series Nature Environment and Pollution Technology
spelling doaj-art-0fcc19ff958e427d9a121eb04d43a35f2025-01-20T07:13:36ZengTechnoscience PublicationsNature Environment and Pollution Technology0972-62682395-34542024-12-012342427243310.46488/NEPT.2024.v23i04.047Characterization of the Liquid Fuel Produced from Catalytic Depolymerization of Polymeric Waste Using Batch ReactorO. L. Rominiyi, M. A. Akintunde, E. I Bello, L. Lajide, O. M. Ikumapayi, O. T. Laseinde and B. A. AdaramolaThe high rate of generation of plastic waste in the country and the fact that all other means of Municipal Plastic Waste (MPW) management techniques had failed leading to the requirement of efficient and alternative disposal technique-depolymerization. The technique involves heating the polymeric waste at an elevated temperature in an inert environment to produce condensable, non-condensable, hydrocarbon and biochar. The plastic waste was collected at the Ilokun dumpsite in Ado-Ekiti, southwest Nigeria. Each component of the waste samples was depolymerized in a batch reactor without the use of a catalyst and with the addition of 10 g of activated carbon (AC) and calcium oxide (CaO) as catalysts. The liquid fuels which were produced between the temperature range of 219 and 232 were blended with standard fuel. Fuel samples with conventional diesel and depolymerized plastic diesel were characterized based on ASTM standards. The results of the proximate and ultimate analysis indicated that percentage moisture content ranges from 0.00-0.18%, volatile matter ranges between 96.66-99.75% and percentage ash content ranges from 0.13-3.03%. Fixed carbon ranges from 0.004-0.31% while the Gross Heating Value (GHV) ranges from 42.66-45.87 MJ/kg. The CHONS analyzer indicated the percentage of carbon, hydrogen, oxygen, nitrogen, and sulfur content range 81.64-85.51%, 12-31-18.04%, 0.00-1.51%, 0.00-0.73%, and 0.10- 0.97% respectively. The results of the physiochemical properties of the samples show that the density, API gravity, Kinematic viscosity and Flash point vary from 0.76-0.83 (g/cm3), 38.98-54.68, 17-2.80 (cm2/s) and 50.0-70.0 (°C) respectively while Cloud point, Pour point, Fire point and Cetane index range from -20-15.0 (°C), -23-7 (°C), 61.0-79.0 (°C) and 38.50-47.0. The pH values of the liquid fuel samples vary from 6.60-3.30. The overall results of the characterization indicated the fuel samples have proximity to the properties of the conventional diesel following the ASTM D975, ASTM D4737, ASTM D1298, ASTM D445, ASTM D2709, and ASTM D482 standards. The depolymerized polymeric waste is sustainable, with a low cost of production. Hence a good substitute as an alternative fuel and means of wealth creation from waste.https://neptjournal.com/upload-images/(47)D-1549.pdfpolymeric waste, ultimate analysis, catalyst depolymerization, activated carbon, calcium oxide, liquid fuel characterization
spellingShingle O. L. Rominiyi, M. A. Akintunde, E. I Bello, L. Lajide, O. M. Ikumapayi, O. T. Laseinde and B. A. Adaramola
Characterization of the Liquid Fuel Produced from Catalytic Depolymerization of Polymeric Waste Using Batch Reactor
Nature Environment and Pollution Technology
polymeric waste, ultimate analysis, catalyst depolymerization, activated carbon, calcium oxide, liquid fuel characterization
title Characterization of the Liquid Fuel Produced from Catalytic Depolymerization of Polymeric Waste Using Batch Reactor
title_full Characterization of the Liquid Fuel Produced from Catalytic Depolymerization of Polymeric Waste Using Batch Reactor
title_fullStr Characterization of the Liquid Fuel Produced from Catalytic Depolymerization of Polymeric Waste Using Batch Reactor
title_full_unstemmed Characterization of the Liquid Fuel Produced from Catalytic Depolymerization of Polymeric Waste Using Batch Reactor
title_short Characterization of the Liquid Fuel Produced from Catalytic Depolymerization of Polymeric Waste Using Batch Reactor
title_sort characterization of the liquid fuel produced from catalytic depolymerization of polymeric waste using batch reactor
topic polymeric waste, ultimate analysis, catalyst depolymerization, activated carbon, calcium oxide, liquid fuel characterization
url https://neptjournal.com/upload-images/(47)D-1549.pdf
work_keys_str_mv AT olrominiyimaakintundeeibellollajideomikumapayiotlaseindeandbaadaramola characterizationoftheliquidfuelproducedfromcatalyticdepolymerizationofpolymericwasteusingbatchreactor