A Damaged Constitutive Model for Rock under Dynamic and High Stress State
The main research work of this paper focuses on the theoretical prediction of the constitutive relationship for rock, concrete, and other quasi-brittle materials under dynamic and complex stress state and the influence of dynamic mechanical behavior of rock on practical engineering problems was stud...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2017-01-01
|
Series: | Shock and Vibration |
Online Access: | http://dx.doi.org/10.1155/2017/8329545 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The main research work of this paper focuses on the theoretical prediction of the constitutive relationship for rock, concrete, and other quasi-brittle materials under dynamic and complex stress state and the influence of dynamic mechanical behavior of rock on practical engineering problems was studied. A damaged elastoplastic model (DEPM) is established for the investigation and prediction of static or dynamic mechanical behavior of rock material. The mechanical behavior (brittleness or plasticity) and dynamic response (due to underground impact pressure and high-velocity impact of projectile) of rock under high in situ stress were investigated via the DEPM combined with the explicit finite element method. This paper suggests the influence of the brittle or plastic mechanical behavior of rock material on deep underground rock engineering. |
---|---|
ISSN: | 1070-9622 1875-9203 |