An atlas of photonic and plasmonic materials for cathodoluminescence microscopy
Cathodoluminescence (CL) microscopy has emerged as a powerful tool for investigating the optical properties of materials at the nanoscale, offering unique insights into the behavior of photonic and plasmonic materials under electron excitation. We introduce an atlas of bulk CL spectra and intensity...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
De Gruyter
2025-07-01
|
| Series: | Nanophotonics |
| Subjects: | |
| Online Access: | https://doi.org/10.1515/nanoph-2025-0135 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Cathodoluminescence (CL) microscopy has emerged as a powerful tool for investigating the optical properties of materials at the nanoscale, offering unique insights into the behavior of photonic and plasmonic materials under electron excitation. We introduce an atlas of bulk CL spectra and intensity for a broad range of materials used in photonics and plasmonics. Through a combination of experimental CL microscopy and Monte Carlo simulations, we characterize spectra and intensity of coherent and incoherent CL, electron penetration depth and energy deposition, offering a foundational reference for interpreting CL signals and understanding material behavior under electron excitation. Our atlas captures CL signals across a wide range of materials, offering valuable insight into intrinsic emission properties for informed material selection and device design in photonics and plasmonics. |
|---|---|
| ISSN: | 2192-8614 |