Real-Time Control of Intelligent Prosthetic Hand Based on the Improved TCN

Intelligent prosthetic hand is an important branch of intelligent robotics. It can remotely replace humans to complete various complex tasks and also help humans to complete rehabilitation training. In human-computer interaction technology, the prosthetic hand can be accurately controlled by surface...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoguang Liu, Jiawei Wang, Tingwen Han, Cunguang Lou, Tie Liang, Hongrui Wang, Xiuling Liu
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Applied Bionics and Biomechanics
Online Access:http://dx.doi.org/10.1155/2022/6488599
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Intelligent prosthetic hand is an important branch of intelligent robotics. It can remotely replace humans to complete various complex tasks and also help humans to complete rehabilitation training. In human-computer interaction technology, the prosthetic hand can be accurately controlled by surface electromyography (sEMG). This paper proposes a new multichannel fusion scheme (MSFS) to extend the virtual channels of sEMG and improve the accuracy of gesture recognition. In addition, the Temporal Convolutional Network (TCN) in deep learning has been improved to enhance the performance of the network. Finally, the sEMG is collected by the Myo armband and the prosthetic hand is controlled in real time to validate the new method. The experimental results show that the method proposed in this paper can improve the accuracy of the control intelligent prosthetic hand, and the accuracy rate is 93.69%.
ISSN:1754-2103