Local Characterizations of Besov and Triebel-Lizorkin Spaces with Variable Exponent

We introduce new Besov and Triebel-Lizorkin spaces with variable integrable exponent, which are different from those introduced by the second author early. Then we characterize these spaces by the boundedness of the local Hardy-Littlewood maximal operator on variable exponent Lebesgue space. Finall...

Full description

Saved in:
Bibliographic Details
Main Authors: Baohua Dong, Jingshi Xu
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2014/417341
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832556592261758976
author Baohua Dong
Jingshi Xu
author_facet Baohua Dong
Jingshi Xu
author_sort Baohua Dong
collection DOAJ
description We introduce new Besov and Triebel-Lizorkin spaces with variable integrable exponent, which are different from those introduced by the second author early. Then we characterize these spaces by the boundedness of the local Hardy-Littlewood maximal operator on variable exponent Lebesgue space. Finally the completeness and the lifting property of these spaces are also given.
format Article
id doaj-art-0ecc32a286b644e6a71b27cfd2d8b821
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-0ecc32a286b644e6a71b27cfd2d8b8212025-02-03T05:44:48ZengWileyJournal of Function Spaces2314-88962314-88882014-01-01201410.1155/2014/417341417341Local Characterizations of Besov and Triebel-Lizorkin Spaces with Variable ExponentBaohua Dong0Jingshi Xu1Department of Mathematics, Hainan Normal University, Haikou 571158, ChinaDepartment of Mathematics, Hainan Normal University, Haikou 571158, ChinaWe introduce new Besov and Triebel-Lizorkin spaces with variable integrable exponent, which are different from those introduced by the second author early. Then we characterize these spaces by the boundedness of the local Hardy-Littlewood maximal operator on variable exponent Lebesgue space. Finally the completeness and the lifting property of these spaces are also given.http://dx.doi.org/10.1155/2014/417341
spellingShingle Baohua Dong
Jingshi Xu
Local Characterizations of Besov and Triebel-Lizorkin Spaces with Variable Exponent
Journal of Function Spaces
title Local Characterizations of Besov and Triebel-Lizorkin Spaces with Variable Exponent
title_full Local Characterizations of Besov and Triebel-Lizorkin Spaces with Variable Exponent
title_fullStr Local Characterizations of Besov and Triebel-Lizorkin Spaces with Variable Exponent
title_full_unstemmed Local Characterizations of Besov and Triebel-Lizorkin Spaces with Variable Exponent
title_short Local Characterizations of Besov and Triebel-Lizorkin Spaces with Variable Exponent
title_sort local characterizations of besov and triebel lizorkin spaces with variable exponent
url http://dx.doi.org/10.1155/2014/417341
work_keys_str_mv AT baohuadong localcharacterizationsofbesovandtriebellizorkinspaceswithvariableexponent
AT jingshixu localcharacterizationsofbesovandtriebellizorkinspaceswithvariableexponent