Collapsing immortal Kähler-Ricci flows

We consider the Kähler-Ricci flow on compact Kähler manifolds with semiample canonical bundle and intermediate Kodaira dimension, and show that the flow collapses to a canonical metric on the base of the Iitaka fibration in the locally smooth topology and with bounded Ricci curvature away from the s...

Full description

Saved in:
Bibliographic Details
Main Authors: Hans-Joachim Hein, Man-Chun Lee, Valentino Tosatti
Format: Article
Language:English
Published: Cambridge University Press 2025-01-01
Series:Forum of Mathematics, Pi
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050508625000101/type/journal_article
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850263491470950400
author Hans-Joachim Hein
Man-Chun Lee
Valentino Tosatti
author_facet Hans-Joachim Hein
Man-Chun Lee
Valentino Tosatti
author_sort Hans-Joachim Hein
collection DOAJ
description We consider the Kähler-Ricci flow on compact Kähler manifolds with semiample canonical bundle and intermediate Kodaira dimension, and show that the flow collapses to a canonical metric on the base of the Iitaka fibration in the locally smooth topology and with bounded Ricci curvature away from the singular fibers. This follows from an asymptotic expansion for the evolving metrics, in the spirit of recent work of the first and third-named authors on collapsing Calabi-Yau metrics, and proves two conjectures of Song and Tian.
format Article
id doaj-art-0e8f1b34dba04f3b93cbf5f6ec4c29da
institution OA Journals
issn 2050-5086
language English
publishDate 2025-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Pi
spelling doaj-art-0e8f1b34dba04f3b93cbf5f6ec4c29da2025-08-20T01:54:57ZengCambridge University PressForum of Mathematics, Pi2050-50862025-01-011310.1017/fmp.2025.10Collapsing immortal Kähler-Ricci flowsHans-Joachim Hein0https://orcid.org/0000-0002-3719-9549Man-Chun Lee1https://orcid.org/0000-0002-4663-6149Valentino Tosatti2Mathematisches Institut, Universität Münster, Einsteinstraße 62, Münster, 48149, Germany; E-mail:Department of Mathematics, The Chinese University of Hong Kong, Lady Shaw Building, Shatin, N.T., 999077, Hong Kong; E-mail:Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York, NY 10012, USAWe consider the Kähler-Ricci flow on compact Kähler manifolds with semiample canonical bundle and intermediate Kodaira dimension, and show that the flow collapses to a canonical metric on the base of the Iitaka fibration in the locally smooth topology and with bounded Ricci curvature away from the singular fibers. This follows from an asymptotic expansion for the evolving metrics, in the spirit of recent work of the first and third-named authors on collapsing Calabi-Yau metrics, and proves two conjectures of Song and Tian.https://www.cambridge.org/core/product/identifier/S2050508625000101/type/journal_article53E3032Q1535K9658J3532W20
spellingShingle Hans-Joachim Hein
Man-Chun Lee
Valentino Tosatti
Collapsing immortal Kähler-Ricci flows
Forum of Mathematics, Pi
53E30
32Q15
35K96
58J35
32W20
title Collapsing immortal Kähler-Ricci flows
title_full Collapsing immortal Kähler-Ricci flows
title_fullStr Collapsing immortal Kähler-Ricci flows
title_full_unstemmed Collapsing immortal Kähler-Ricci flows
title_short Collapsing immortal Kähler-Ricci flows
title_sort collapsing immortal kahler ricci flows
topic 53E30
32Q15
35K96
58J35
32W20
url https://www.cambridge.org/core/product/identifier/S2050508625000101/type/journal_article
work_keys_str_mv AT hansjoachimhein collapsingimmortalkahlerricciflows
AT manchunlee collapsingimmortalkahlerricciflows
AT valentinotosatti collapsingimmortalkahlerricciflows