Irreducible complexity of iterated symmetric bimodal maps

We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some prope...

Full description

Saved in:
Bibliographic Details
Main Authors: J. P. Lampreia, R. Severino, J. Sousa Ramos
Format: Article
Language:English
Published: Wiley 2005-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/DDNS.2005.69
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832558840137121792
author J. P. Lampreia
R. Severino
J. Sousa Ramos
author_facet J. P. Lampreia
R. Severino
J. Sousa Ramos
author_sort J. P. Lampreia
collection DOAJ
description We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the ∗-product induced on the associated Markov shifts.
format Article
id doaj-art-0e163a153eea4430bec935f708a2795e
institution Kabale University
issn 1026-0226
1607-887X
language English
publishDate 2005-01-01
publisher Wiley
record_format Article
series Discrete Dynamics in Nature and Society
spelling doaj-art-0e163a153eea4430bec935f708a2795e2025-02-03T01:31:26ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2005-01-0120051698510.1155/DDNS.2005.69Irreducible complexity of iterated symmetric bimodal mapsJ. P. Lampreia0R. Severino1J. Sousa Ramos2Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisboa, PortugalDepartamento de Matemática, Universidade do Minho, Braga 4710-057, PortugalDepartamento de Matemática, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa, PortugalWe introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the ∗-product induced on the associated Markov shifts.http://dx.doi.org/10.1155/DDNS.2005.69
spellingShingle J. P. Lampreia
R. Severino
J. Sousa Ramos
Irreducible complexity of iterated symmetric bimodal maps
Discrete Dynamics in Nature and Society
title Irreducible complexity of iterated symmetric bimodal maps
title_full Irreducible complexity of iterated symmetric bimodal maps
title_fullStr Irreducible complexity of iterated symmetric bimodal maps
title_full_unstemmed Irreducible complexity of iterated symmetric bimodal maps
title_short Irreducible complexity of iterated symmetric bimodal maps
title_sort irreducible complexity of iterated symmetric bimodal maps
url http://dx.doi.org/10.1155/DDNS.2005.69
work_keys_str_mv AT jplampreia irreduciblecomplexityofiteratedsymmetricbimodalmaps
AT rseverino irreduciblecomplexityofiteratedsymmetricbimodalmaps
AT jsousaramos irreduciblecomplexityofiteratedsymmetricbimodalmaps