Irreducible complexity of iterated symmetric bimodal maps
We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some prope...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2005-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/DDNS.2005.69 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832558840137121792 |
---|---|
author | J. P. Lampreia R. Severino J. Sousa Ramos |
author_facet | J. P. Lampreia R. Severino J. Sousa Ramos |
author_sort | J. P. Lampreia |
collection | DOAJ |
description | We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the ∗-product induced on the associated Markov shifts. |
format | Article |
id | doaj-art-0e163a153eea4430bec935f708a2795e |
institution | Kabale University |
issn | 1026-0226 1607-887X |
language | English |
publishDate | 2005-01-01 |
publisher | Wiley |
record_format | Article |
series | Discrete Dynamics in Nature and Society |
spelling | doaj-art-0e163a153eea4430bec935f708a2795e2025-02-03T01:31:26ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2005-01-0120051698510.1155/DDNS.2005.69Irreducible complexity of iterated symmetric bimodal mapsJ. P. Lampreia0R. Severino1J. Sousa Ramos2Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisboa, PortugalDepartamento de Matemática, Universidade do Minho, Braga 4710-057, PortugalDepartamento de Matemática, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa, PortugalWe introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the ∗-product induced on the associated Markov shifts.http://dx.doi.org/10.1155/DDNS.2005.69 |
spellingShingle | J. P. Lampreia R. Severino J. Sousa Ramos Irreducible complexity of iterated symmetric bimodal maps Discrete Dynamics in Nature and Society |
title | Irreducible complexity of iterated symmetric bimodal maps |
title_full | Irreducible complexity of iterated symmetric bimodal maps |
title_fullStr | Irreducible complexity of iterated symmetric bimodal maps |
title_full_unstemmed | Irreducible complexity of iterated symmetric bimodal maps |
title_short | Irreducible complexity of iterated symmetric bimodal maps |
title_sort | irreducible complexity of iterated symmetric bimodal maps |
url | http://dx.doi.org/10.1155/DDNS.2005.69 |
work_keys_str_mv | AT jplampreia irreduciblecomplexityofiteratedsymmetricbimodalmaps AT rseverino irreduciblecomplexityofiteratedsymmetricbimodalmaps AT jsousaramos irreduciblecomplexityofiteratedsymmetricbimodalmaps |