Microstructure and elevated temperature wear behavior of HVOF-sprayed SS304L stainless-steel coating

Abstract The paper aims to investigate the performance of the SS304L stainless steel coating on wear properties by varying load, temperature and velocity. Stainless-steel coatings were fabricated by high-velocity oxy-fuel spraying (HVOF) on superfer800. Surface morphology, elemental distribution and...

Full description

Saved in:
Bibliographic Details
Main Authors: Subbarao Medabalimi, Suresh Gudala, Uzwalkiran Rokkala, Ajit M. Hebbale, M. R. Ramesh
Format: Article
Language:English
Published: Springer 2025-04-01
Series:Discover Applied Sciences
Subjects:
Online Access:https://doi.org/10.1007/s42452-025-06904-7
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The paper aims to investigate the performance of the SS304L stainless steel coating on wear properties by varying load, temperature and velocity. Stainless-steel coatings were fabricated by high-velocity oxy-fuel spraying (HVOF) on superfer800. Surface morphology, elemental distribution and phase analysis were expressed by SEM, EDS, and XRD, respectively. The porosity, average surface roughness, and average microhardness of HVOF stainless steel coating are 2%, 7 µm, and 1167 ± 54 HV0.3, respectively. The wear rate of stainless-steel coating is 0.5 × 10−3 mm3/m at 600 °C with 20 N loads, which is about 16 times lower than the substrate. Adhesion and abrasion are the main wear mechanisms of HVOF stainless steel coatings during high-temperature tests. Comparing to superfer800 substrate, stainless steel coatings showed superior wear resistance at all the loads, temperature and velocities.
ISSN:3004-9261