The Third Five-Parametric Hypergeometric Quantum-Mechanical Potential

We introduce the third five-parametric ordinary hypergeometric energy-independent quantum-mechanical potential, after the Eckart and Pöschl-Teller potentials, which is proportional to an arbitrary variable parameter and has a shape that is independent of that parameter. Depending on an involved para...

Full description

Saved in:
Bibliographic Details
Main Authors: T. A. Ishkhanyan, A. M. Ishkhanyan
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Advances in High Energy Physics
Online Access:http://dx.doi.org/10.1155/2018/2769597
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce the third five-parametric ordinary hypergeometric energy-independent quantum-mechanical potential, after the Eckart and Pöschl-Teller potentials, which is proportional to an arbitrary variable parameter and has a shape that is independent of that parameter. Depending on an involved parameter, the potential presents either a short-range singular well (which behaves as inverse square root at the origin and vanishes exponentially at infinity) or a smooth asymmetric step-barrier (with variable height and steepness). The general solution of the Schrödinger equation for this potential, which is a member of a general Heun family of potentials, is written through fundamental solutions each of which presents an irreducible linear combination of two Gauss ordinary hypergeometric functions.
ISSN:1687-7357
1687-7365