The Third Five-Parametric Hypergeometric Quantum-Mechanical Potential
We introduce the third five-parametric ordinary hypergeometric energy-independent quantum-mechanical potential, after the Eckart and Pöschl-Teller potentials, which is proportional to an arbitrary variable parameter and has a shape that is independent of that parameter. Depending on an involved para...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2018-01-01
|
Series: | Advances in High Energy Physics |
Online Access: | http://dx.doi.org/10.1155/2018/2769597 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce the third five-parametric ordinary hypergeometric energy-independent quantum-mechanical potential, after the Eckart and Pöschl-Teller potentials, which is proportional to an arbitrary variable parameter and has a shape that is independent of that parameter. Depending on an involved parameter, the potential presents either a short-range singular well (which behaves as inverse square root at the origin and vanishes exponentially at infinity) or a smooth asymmetric step-barrier (with variable height and steepness). The general solution of the Schrödinger equation for this potential, which is a member of a general Heun family of potentials, is written through fundamental solutions each of which presents an irreducible linear combination of two Gauss ordinary hypergeometric functions. |
---|---|
ISSN: | 1687-7357 1687-7365 |