Asymptotically Stable Solutions of a Generalized Fractional Quadratic Functional-Integral Equation of Erdélyi-Kober Type
We study a generalized fractional quadratic functional-integral equation of Erdélyi-Kober type in the Banach space BC(ℝ+). We show that this equation has at least one asymptotically stable solution.
Saved in:
Main Authors: | Mohamed Abdalla Darwish, Beata Rzepka |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2014/192542 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
On Solutions of a Nonlinear Erdélyi-Kober Integral Equation
by: Nurgali K. Ashirbayev, et al.
Published: (2014-01-01) -
Existence and Asymptotic Stability of Solutions of a Functional Integral Equation via a Consequence of Sadovskii’s Theorem
by: Agnieszka Chlebowicz, et al.
Published: (2014-01-01) -
Multiple Positive Solutions for Quadratic Integral Equations of Fractional Order
by: Hui-Sheng Ding, et al.
Published: (2017-01-01) -
Asymptotic expansion of small analytic solutions to the quadratic nonlinear Schrödinger equations in two-dimensional spaces
by: Nakao Hayashi, et al.
Published: (2002-01-01) -
Generalized Asymptotically Almost Periodic and Generalized Asymptotically Almost Automorphic Solutions of Abstract Multiterm Fractional Differential Inclusions
by: G. M. N’Guérékata, et al.
Published: (2018-01-01)