Revisiting Dipole-Induced Fluorinated-Anion Decomposition Reaction for Promoting a LiF-Rich Interphase in Lithium-Metal Batteries

Highlights Single-layer graphdiyne on MXene (sGDY@MXene) heterostructure was fabricated and integrated into polypropylene separators, directing a LiF-rich solid electrolyte interphase and long-term stability of lithium-metal anode. Instead of direct electron transfer from surface polar groups to flu...

Full description

Saved in:
Bibliographic Details
Main Authors: Liu Wang, Jiahui Guo, Qi Qi, Xiaotong Li, Yuanmeng Ge, Haoyi Li, Yunfeng Chao, Jiang Du, Xinwei Cui
Format: Article
Language:English
Published: SpringerOpen 2025-01-01
Series:Nano-Micro Letters
Subjects:
Online Access:https://doi.org/10.1007/s40820-024-01637-5
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Highlights Single-layer graphdiyne on MXene (sGDY@MXene) heterostructure was fabricated and integrated into polypropylene separators, directing a LiF-rich solid electrolyte interphase and long-term stability of lithium-metal anode. Instead of direct electron transfer from surface polar groups to fluorinated anions, the adsorbed Li ions on sGDY@MXene act as dynamic bridges collaboratively connecting the electron-donating heterostructure to the anion and its derivatives, facilitating interface charge transfer. Dedicate balance between lithiophilicity and high Li-ion mobility is the key to promote the dipole-induced fluorinated-anion decomposition.
ISSN:2311-6706
2150-5551