Hankel complementary integral transformations of arbitrary order

Four selfreciprocal integral transformations of Hankel type are defined through(ℋi,μf)(y)=Fi(y)=∫0∞αi(x)ℊi,μ(xy)f(x)dx,   ℋi,μ−1=ℋi,μ,where i=1,2,3,4; μ≥0; α1(x)=x1+2μ, ℊ1,μ(x)=x−μJμ(x), Jμ(x) being the Bessel function of the first kind of order μ; α2(x)=x1−2μ, ℊ2,μ(x)=(−1)μx2μℊ1,μ(x); α3(x)=x−1−2μ,...

Full description

Saved in:
Bibliographic Details
Main Authors: M. Linares Linares, J. M. R. Mendez Pérez
Format: Article
Language:English
Published: Wiley 1992-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171292000401
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849309139815104512
author M. Linares Linares
J. M. R. Mendez Pérez
author_facet M. Linares Linares
J. M. R. Mendez Pérez
author_sort M. Linares Linares
collection DOAJ
description Four selfreciprocal integral transformations of Hankel type are defined through(ℋi,μf)(y)=Fi(y)=∫0∞αi(x)ℊi,μ(xy)f(x)dx,   ℋi,μ−1=ℋi,μ,where i=1,2,3,4; μ≥0; α1(x)=x1+2μ, ℊ1,μ(x)=x−μJμ(x), Jμ(x) being the Bessel function of the first kind of order μ; α2(x)=x1−2μ, ℊ2,μ(x)=(−1)μx2μℊ1,μ(x); α3(x)=x−1−2μ, ℊ3,μ(x)=x1+2μℊ1,μ(x), and α4(x)=x−1+2μ, ℊ4,μ(x)=(−1)μxℊ1,μ(x). The simultaneous use of transformations ℋ1,μ, and ℋ2,μ, (which are denoted by ℋμ) allows us to solve many problems of Mathematical Physics involving the differential operator Δμ=D2+(1+2μ)x−1D, whereas the pair of transformations ℋ3,μ and ℋ4,μ, (which we express by ℋμ*) permits us to tackle those problems containing its adjoint operator Δμ*=D2−(1+2μ)x−1D+(1+2μ)x−2, no matter what the real value of μ be. These transformations are also investigated in a space of generalized functions according to the mixed Parseval equation∫0∞f(x)g(x)dx=∫0∞(ℋμf)(y)(ℋμ*g)(y)dy,which is now valid for all real μ.
format Article
id doaj-art-0d26e4eec8ac482785ed57baed5b4e21
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1992-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-0d26e4eec8ac482785ed57baed5b4e212025-08-20T03:54:15ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251992-01-0115232333210.1155/S0161171292000401Hankel complementary integral transformations of arbitrary orderM. Linares Linares0J. M. R. Mendez Pérez1Departamento de Informática y Sistemas, Universidad de Las Palmas, Canary Islands, Las Palmas de Gran Canaria, SpainDepartamento de Análisis Matemático, Facultad de Matemáticas, Universidad de La Laguna, Tenerife, Canary Islands, La Laguna, SpainFour selfreciprocal integral transformations of Hankel type are defined through(ℋi,μf)(y)=Fi(y)=∫0∞αi(x)ℊi,μ(xy)f(x)dx,   ℋi,μ−1=ℋi,μ,where i=1,2,3,4; μ≥0; α1(x)=x1+2μ, ℊ1,μ(x)=x−μJμ(x), Jμ(x) being the Bessel function of the first kind of order μ; α2(x)=x1−2μ, ℊ2,μ(x)=(−1)μx2μℊ1,μ(x); α3(x)=x−1−2μ, ℊ3,μ(x)=x1+2μℊ1,μ(x), and α4(x)=x−1+2μ, ℊ4,μ(x)=(−1)μxℊ1,μ(x). The simultaneous use of transformations ℋ1,μ, and ℋ2,μ, (which are denoted by ℋμ) allows us to solve many problems of Mathematical Physics involving the differential operator Δμ=D2+(1+2μ)x−1D, whereas the pair of transformations ℋ3,μ and ℋ4,μ, (which we express by ℋμ*) permits us to tackle those problems containing its adjoint operator Δμ*=D2−(1+2μ)x−1D+(1+2μ)x−2, no matter what the real value of μ be. These transformations are also investigated in a space of generalized functions according to the mixed Parseval equation∫0∞f(x)g(x)dx=∫0∞(ℋμf)(y)(ℋμ*g)(y)dy,which is now valid for all real μ.http://dx.doi.org/10.1155/S0161171292000401complementary Hankel transformationsParseval equationgeneralized functions.
spellingShingle M. Linares Linares
J. M. R. Mendez Pérez
Hankel complementary integral transformations of arbitrary order
International Journal of Mathematics and Mathematical Sciences
complementary Hankel transformations
Parseval equation
generalized functions.
title Hankel complementary integral transformations of arbitrary order
title_full Hankel complementary integral transformations of arbitrary order
title_fullStr Hankel complementary integral transformations of arbitrary order
title_full_unstemmed Hankel complementary integral transformations of arbitrary order
title_short Hankel complementary integral transformations of arbitrary order
title_sort hankel complementary integral transformations of arbitrary order
topic complementary Hankel transformations
Parseval equation
generalized functions.
url http://dx.doi.org/10.1155/S0161171292000401
work_keys_str_mv AT mlinareslinares hankelcomplementaryintegraltransformationsofarbitraryorder
AT jmrmendezperez hankelcomplementaryintegraltransformationsofarbitraryorder