Optimal Skyhook and Groundhook Control for Semiactive Suspension: A Comprehensive Methodology

This manuscript establishes a methodology that guides the designers to develop an optimal controller for a semiactive suspension system. The methodology’s processes are generally explained and straightforwardly, so a designer can extrapolate the methodology to a specific problem. Furthermore, this r...

Full description

Saved in:
Bibliographic Details
Main Authors: C. Steven Díaz-Choque, L. C. Félix-Herrán, Ricardo A. Ramírez-Mendoza
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2021/8084343
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This manuscript establishes a methodology that guides the designers to develop an optimal controller for a semiactive suspension system. The methodology’s processes are generally explained and straightforwardly, so a designer can extrapolate the methodology to a specific problem. Furthermore, this research presents an optimal control strategy for a semiactive control applied to a quarter vehicle model as an example of using the methodology. A particular interest is made in the advantages of such a simple synthesis and in the compromises that must be done in skyhook and groundhook control law applications. This manuscript exposes a logical and straightforward approach for choosing the controllers’ design parameters; also, efforts must be made to express precise performance specifications and constraints in the control design. The herein methodology could be relevant in the process design for intelligent suspensions, from one-quarter toward the entire vehicle.
ISSN:1875-9203