On Computability and Applicability of Mann-Reich-Sabach-Type Algorithms for Approximating the Solutions of Equilibrium Problems in Hilbert Spaces
We establish the existence of a strong convergent selection of a modified Mann-Reich-Sabach iteration scheme for approximating the common elements of the set of fixed points F(T) of a multivalued (or single-valued) k-strictly pseudocontractive-type mapping T and the set of solutions EP(F) of an equi...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2018-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2018/7218487 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We establish the existence of a strong convergent selection of a modified Mann-Reich-Sabach iteration scheme for approximating the common elements of the set of fixed points F(T) of a multivalued (or single-valued) k-strictly pseudocontractive-type mapping T and the set of solutions EP(F) of an equilibrium problem for a bifunction F in a real Hilbert space H. This work is a continuation of the study on the computability and applicability of algorithms for approximating the solutions of equilibrium problems for bifunctions involving the construction of a sequence {Kn}n=1∞ of closed convex subsets of H from an arbitrary x0∈H and a sequence {xn}n=1∞ of the metric projections of x0 into Kn. The obtained result is a partial resolution of the controversy over the computability of such algorithms in the contemporary literature. |
---|---|
ISSN: | 1085-3375 1687-0409 |