Discovery of bicyclic borane molecule B14H26
Abstract The discovery of fullerene following the synthesis of graphene marked a paradigm shift in chemistry. Here, we report the discovery of biycycloborane, arising from the synthesis of borophane (hydrogen boride). Uniquely, this synthesis method involves a decomposition mechanism rather than tra...
Saved in:
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Communications Chemistry |
Online Access: | https://doi.org/10.1038/s42004-025-01409-1 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract The discovery of fullerene following the synthesis of graphene marked a paradigm shift in chemistry. Here, we report the discovery of biycycloborane, arising from the synthesis of borophane (hydrogen boride). Uniquely, this synthesis method involves a decomposition mechanism rather than traditional atom-by-atom assembly, marking an unique approach to constructing complex borane structures. The mass spectrometry unveiled that the stable molecule has a mass of 178 in atomic mass unit with a stoichiometry of B14H26. Optical spectra and simulations further evidenced its bicyclic structure, featuring fulvene-like heptagons or octagons. This borane molecule, analogous to cyclic hydrocarbons, adopts a unit configuration with a three-center two-electron (3c-2e) bonding, akin to diborane. The B14H26 molecule has been historically anticipated as a distant descendant of the dodecahedron borane, but it was born from the hydrogen boride sheet with a non-symmorphic symmetry. The discovery of biycycloborane expands the frontiers of boron chemistry, promising advancements in boron-based nanomaterials and beyond. |
---|---|
ISSN: | 2399-3669 |