On Value Distribution for the Mellin Transform of the Fourth Power of the Riemann Zeta Function

In this paper, the asymptotic behavior of the modified Mellin transform <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">Z</mi><mn>2</mn&g...

Full description

Saved in:
Bibliographic Details
Main Authors: Virginija Garbaliauskienė, Audronė Rimkevičienė, Mindaugas Stoncelis, Darius Šiaučiūnas
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/1/34
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589095068499968
author Virginija Garbaliauskienė
Audronė Rimkevičienė
Mindaugas Stoncelis
Darius Šiaučiūnas
author_facet Virginija Garbaliauskienė
Audronė Rimkevičienė
Mindaugas Stoncelis
Darius Šiaučiūnas
author_sort Virginija Garbaliauskienė
collection DOAJ
description In this paper, the asymptotic behavior of the modified Mellin transform <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">Z</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>=</mo><mi>σ</mi><mo>+</mo><mi>i</mi><mi>t</mi></mrow></semantics></math></inline-formula>, of the fourth power of the Riemann zeta function is characterized by weak convergence of probability measures in the space of analytic functions. The main results are devoted to probability measures defined by generalized shifts <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">Z</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mi>i</mi><mi>φ</mi><mrow><mo>(</mo><mi>τ</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with a real increasing to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>+</mo><mo>∞</mo></mrow></semantics></math></inline-formula> differentiable functions connected to the growth of the second moment of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">Z</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. It is proven that the mass of the limit measure is concentrated at the point expressed as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>h</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>≡</mo><mn>0</mn></mrow></semantics></math></inline-formula>. This is used for approximation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>h</mi><mo>(</mo><mi>s</mi><mo>)</mo></mrow></semantics></math></inline-formula> by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">Z</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mi>i</mi><mi>φ</mi><mrow><mo>(</mo><mi>τ</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula>.
format Article
id doaj-art-0c7228f8112d44a1b6a9d57f21adc82a
institution Kabale University
issn 2075-1680
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-0c7228f8112d44a1b6a9d57f21adc82a2025-01-24T13:22:13ZengMDPI AGAxioms2075-16802025-01-011413410.3390/axioms14010034On Value Distribution for the Mellin Transform of the Fourth Power of the Riemann Zeta FunctionVirginija Garbaliauskienė0Audronė Rimkevičienė1Mindaugas Stoncelis2Darius Šiaučiūnas3Institute of Regional Development, Šiauliai Academy, Vilnius University, P. Višinskio Str. 25, LT-76351 Šiauliai, LithuaniaFaculty of Business and Technologies, Šiaulių Valstybinė Kolegija, Aušros Av. 40, LT-76241 Šiauliai, LithuaniaInstitute of Regional Development, Šiauliai Academy, Vilnius University, P. Višinskio Str. 25, LT-76351 Šiauliai, LithuaniaInstitute of Regional Development, Šiauliai Academy, Vilnius University, P. Višinskio Str. 25, LT-76351 Šiauliai, LithuaniaIn this paper, the asymptotic behavior of the modified Mellin transform <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">Z</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>=</mo><mi>σ</mi><mo>+</mo><mi>i</mi><mi>t</mi></mrow></semantics></math></inline-formula>, of the fourth power of the Riemann zeta function is characterized by weak convergence of probability measures in the space of analytic functions. The main results are devoted to probability measures defined by generalized shifts <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">Z</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mi>i</mi><mi>φ</mi><mrow><mo>(</mo><mi>τ</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with a real increasing to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>+</mo><mo>∞</mo></mrow></semantics></math></inline-formula> differentiable functions connected to the growth of the second moment of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">Z</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. It is proven that the mass of the limit measure is concentrated at the point expressed as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>h</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>≡</mo><mn>0</mn></mrow></semantics></math></inline-formula>. This is used for approximation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>h</mi><mo>(</mo><mi>s</mi><mo>)</mo></mrow></semantics></math></inline-formula> by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">Z</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mi>i</mi><mi>φ</mi><mrow><mo>(</mo><mi>τ</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2075-1680/14/1/34limit theoremMellin transformRiemann zeta functionspace of analytic functionsweak convergence
spellingShingle Virginija Garbaliauskienė
Audronė Rimkevičienė
Mindaugas Stoncelis
Darius Šiaučiūnas
On Value Distribution for the Mellin Transform of the Fourth Power of the Riemann Zeta Function
Axioms
limit theorem
Mellin transform
Riemann zeta function
space of analytic functions
weak convergence
title On Value Distribution for the Mellin Transform of the Fourth Power of the Riemann Zeta Function
title_full On Value Distribution for the Mellin Transform of the Fourth Power of the Riemann Zeta Function
title_fullStr On Value Distribution for the Mellin Transform of the Fourth Power of the Riemann Zeta Function
title_full_unstemmed On Value Distribution for the Mellin Transform of the Fourth Power of the Riemann Zeta Function
title_short On Value Distribution for the Mellin Transform of the Fourth Power of the Riemann Zeta Function
title_sort on value distribution for the mellin transform of the fourth power of the riemann zeta function
topic limit theorem
Mellin transform
Riemann zeta function
space of analytic functions
weak convergence
url https://www.mdpi.com/2075-1680/14/1/34
work_keys_str_mv AT virginijagarbaliauskiene onvaluedistributionforthemellintransformofthefourthpoweroftheriemannzetafunction
AT audronerimkeviciene onvaluedistributionforthemellintransformofthefourthpoweroftheriemannzetafunction
AT mindaugasstoncelis onvaluedistributionforthemellintransformofthefourthpoweroftheriemannzetafunction
AT dariussiauciunas onvaluedistributionforthemellintransformofthefourthpoweroftheriemannzetafunction