A duality theorem for solutions of elliptic equations

Let L be a second order linear partial differential operator of elliptic type on a domain Ω of ℝm with coefficients in C∞(Ω). We consider the linear space of all solutions of the equation Lu=0 on Ω with the topology of uniform convergence on compact subsets and describe the topological dual of this...

Full description

Saved in:
Bibliographic Details
Main Author: Pierre Blanchet
Format: Article
Language:English
Published: Wiley 1990-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171290000114
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let L be a second order linear partial differential operator of elliptic type on a domain Ω of ℝm with coefficients in C∞(Ω). We consider the linear space of all solutions of the equation Lu=0 on Ω with the topology of uniform convergence on compact subsets and describe the topological dual of this space. It turns out that this dual may be identified with the space of solutions of an adjoint equation near the boundary modulo the solutions of this adjoint equation on the entire domain.
ISSN:0161-1712
1687-0425