Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations

A least squares technique is developed for identifying unknownparameters in a coupled system of nonlinear size-structuredpopulations. Convergence results for the parameter estimationtechnique are established. Ample numerical simulations andstatistical evidence are provided to demonstrate the feasibi...

Full description

Saved in:
Bibliographic Details
Main Authors: Azmy S. Ackleh, H.T. Banks, Keng Deng, Shuhua Hu
Format: Article
Language:English
Published: AIMS Press 2005-02-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2005.2.289
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832590234311720960
author Azmy S. Ackleh
H.T. Banks
Keng Deng
Shuhua Hu
author_facet Azmy S. Ackleh
H.T. Banks
Keng Deng
Shuhua Hu
author_sort Azmy S. Ackleh
collection DOAJ
description A least squares technique is developed for identifying unknownparameters in a coupled system of nonlinear size-structuredpopulations. Convergence results for the parameter estimationtechnique are established. Ample numerical simulations andstatistical evidence are provided to demonstrate the feasibilityof this approach.
format Article
id doaj-art-0bf4696757194dee89c9de382c024f1d
institution Kabale University
issn 1551-0018
language English
publishDate 2005-02-01
publisher AIMS Press
record_format Article
series Mathematical Biosciences and Engineering
spelling doaj-art-0bf4696757194dee89c9de382c024f1d2025-01-24T01:48:05ZengAIMS PressMathematical Biosciences and Engineering1551-00182005-02-012228931510.3934/mbe.2005.2.289Parameter Estimation in a Coupled System of Nonlinear Size-Structured PopulationsAzmy S. Ackleh0H.T. Banks1Keng Deng2Shuhua Hu3Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-1010Center for Research in Scientific Computation, North Carolina State University, Raleigh, North Carolina 27695-8205Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-1010Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-1010A least squares technique is developed for identifying unknownparameters in a coupled system of nonlinear size-structuredpopulations. Convergence results for the parameter estimationtechnique are established. Ample numerical simulations andstatistical evidence are provided to demonstrate the feasibilityof this approach.https://www.aimspress.com/article/doi/10.3934/mbe.2005.2.289finite difference approximationcoupled system of nonlinear size-structuredpopulationsparameter estimationstandard deviation.numerical simulation
spellingShingle Azmy S. Ackleh
H.T. Banks
Keng Deng
Shuhua Hu
Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations
Mathematical Biosciences and Engineering
finite difference approximation
coupled system of nonlinear size-structuredpopulations
parameter estimation
standard deviation.
numerical simulation
title Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations
title_full Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations
title_fullStr Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations
title_full_unstemmed Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations
title_short Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations
title_sort parameter estimation in a coupled system of nonlinear size structured populations
topic finite difference approximation
coupled system of nonlinear size-structuredpopulations
parameter estimation
standard deviation.
numerical simulation
url https://www.aimspress.com/article/doi/10.3934/mbe.2005.2.289
work_keys_str_mv AT azmysackleh parameterestimationinacoupledsystemofnonlinearsizestructuredpopulations
AT htbanks parameterestimationinacoupledsystemofnonlinearsizestructuredpopulations
AT kengdeng parameterestimationinacoupledsystemofnonlinearsizestructuredpopulations
AT shuhuahu parameterestimationinacoupledsystemofnonlinearsizestructuredpopulations