Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations
A least squares technique is developed for identifying unknownparameters in a coupled system of nonlinear size-structuredpopulations. Convergence results for the parameter estimationtechnique are established. Ample numerical simulations andstatistical evidence are provided to demonstrate the feasibi...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2005-02-01
|
Series: | Mathematical Biosciences and Engineering |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/mbe.2005.2.289 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832590234311720960 |
---|---|
author | Azmy S. Ackleh H.T. Banks Keng Deng Shuhua Hu |
author_facet | Azmy S. Ackleh H.T. Banks Keng Deng Shuhua Hu |
author_sort | Azmy S. Ackleh |
collection | DOAJ |
description | A least squares technique is developed for identifying unknownparameters in a coupled system of nonlinear size-structuredpopulations. Convergence results for the parameter estimationtechnique are established. Ample numerical simulations andstatistical evidence are provided to demonstrate the feasibilityof this approach. |
format | Article |
id | doaj-art-0bf4696757194dee89c9de382c024f1d |
institution | Kabale University |
issn | 1551-0018 |
language | English |
publishDate | 2005-02-01 |
publisher | AIMS Press |
record_format | Article |
series | Mathematical Biosciences and Engineering |
spelling | doaj-art-0bf4696757194dee89c9de382c024f1d2025-01-24T01:48:05ZengAIMS PressMathematical Biosciences and Engineering1551-00182005-02-012228931510.3934/mbe.2005.2.289Parameter Estimation in a Coupled System of Nonlinear Size-Structured PopulationsAzmy S. Ackleh0H.T. Banks1Keng Deng2Shuhua Hu3Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-1010Center for Research in Scientific Computation, North Carolina State University, Raleigh, North Carolina 27695-8205Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-1010Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-1010A least squares technique is developed for identifying unknownparameters in a coupled system of nonlinear size-structuredpopulations. Convergence results for the parameter estimationtechnique are established. Ample numerical simulations andstatistical evidence are provided to demonstrate the feasibilityof this approach.https://www.aimspress.com/article/doi/10.3934/mbe.2005.2.289finite difference approximationcoupled system of nonlinear size-structuredpopulationsparameter estimationstandard deviation.numerical simulation |
spellingShingle | Azmy S. Ackleh H.T. Banks Keng Deng Shuhua Hu Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations Mathematical Biosciences and Engineering finite difference approximation coupled system of nonlinear size-structuredpopulations parameter estimation standard deviation. numerical simulation |
title | Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations |
title_full | Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations |
title_fullStr | Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations |
title_full_unstemmed | Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations |
title_short | Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations |
title_sort | parameter estimation in a coupled system of nonlinear size structured populations |
topic | finite difference approximation coupled system of nonlinear size-structuredpopulations parameter estimation standard deviation. numerical simulation |
url | https://www.aimspress.com/article/doi/10.3934/mbe.2005.2.289 |
work_keys_str_mv | AT azmysackleh parameterestimationinacoupledsystemofnonlinearsizestructuredpopulations AT htbanks parameterestimationinacoupledsystemofnonlinearsizestructuredpopulations AT kengdeng parameterestimationinacoupledsystemofnonlinearsizestructuredpopulations AT shuhuahu parameterestimationinacoupledsystemofnonlinearsizestructuredpopulations |