Intersection of Ideals in a Polynomial Ring over a Dual Valuation Domain

Let V be a valuation domain and let A=V+εV be a dual valuation domain. We propose a method for computing a strong Gröbner basis in R=A[x1,…,xn]; given polynomials f1,…,fs∈R, a method for computing a generating set for Syz(f1,…,fs)={(h1,…,hs)∈Rs∣h1f1+⋯+hsfs=0} is given; and, finally, given two ideals...

Full description

Saved in:
Bibliographic Details
Main Authors: Regis F. Babindamana, Andre S. E. Mialebama Bouesso
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2018/9316901
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832561265284743168
author Regis F. Babindamana
Andre S. E. Mialebama Bouesso
author_facet Regis F. Babindamana
Andre S. E. Mialebama Bouesso
author_sort Regis F. Babindamana
collection DOAJ
description Let V be a valuation domain and let A=V+εV be a dual valuation domain. We propose a method for computing a strong Gröbner basis in R=A[x1,…,xn]; given polynomials f1,…,fs∈R, a method for computing a generating set for Syz(f1,…,fs)={(h1,…,hs)∈Rs∣h1f1+⋯+hsfs=0} is given; and, finally, given two ideals I=〈f1,…,fs〉 and J=〈g1,…,gr〉 of R, we propose an algorithm for computing a generating set for I∩J.
format Article
id doaj-art-0ba3c9e1fdd0473ebdd8b9c01710120e
institution Kabale University
issn 2314-4629
2314-4785
language English
publishDate 2018-01-01
publisher Wiley
record_format Article
series Journal of Mathematics
spelling doaj-art-0ba3c9e1fdd0473ebdd8b9c01710120e2025-02-03T01:25:27ZengWileyJournal of Mathematics2314-46292314-47852018-01-01201810.1155/2018/93169019316901Intersection of Ideals in a Polynomial Ring over a Dual Valuation DomainRegis F. Babindamana0Andre S. E. Mialebama Bouesso1Université Marien Ngouabi, Faculté des Sciences et Technique Département de Mathématiques, BP: 69, Brazzaville, CongoUniversité Marien Ngouabi, Faculté des Sciences et Technique Département de Mathématiques, BP: 69, Brazzaville, CongoLet V be a valuation domain and let A=V+εV be a dual valuation domain. We propose a method for computing a strong Gröbner basis in R=A[x1,…,xn]; given polynomials f1,…,fs∈R, a method for computing a generating set for Syz(f1,…,fs)={(h1,…,hs)∈Rs∣h1f1+⋯+hsfs=0} is given; and, finally, given two ideals I=〈f1,…,fs〉 and J=〈g1,…,gr〉 of R, we propose an algorithm for computing a generating set for I∩J.http://dx.doi.org/10.1155/2018/9316901
spellingShingle Regis F. Babindamana
Andre S. E. Mialebama Bouesso
Intersection of Ideals in a Polynomial Ring over a Dual Valuation Domain
Journal of Mathematics
title Intersection of Ideals in a Polynomial Ring over a Dual Valuation Domain
title_full Intersection of Ideals in a Polynomial Ring over a Dual Valuation Domain
title_fullStr Intersection of Ideals in a Polynomial Ring over a Dual Valuation Domain
title_full_unstemmed Intersection of Ideals in a Polynomial Ring over a Dual Valuation Domain
title_short Intersection of Ideals in a Polynomial Ring over a Dual Valuation Domain
title_sort intersection of ideals in a polynomial ring over a dual valuation domain
url http://dx.doi.org/10.1155/2018/9316901
work_keys_str_mv AT regisfbabindamana intersectionofidealsinapolynomialringoveradualvaluationdomain
AT andresemialebamabouesso intersectionofidealsinapolynomialringoveradualvaluationdomain