Challenges in assessing Fire Weather changes in a warming climate

Abstract The Canadian Fire Weather Index (FWI), widely used to assess wildfire danger, typically relies on noon-specific meteorological data. However, climate models often provide only daily aggregated values, posing a challenge for accurate FWI calculations. We evaluated daily approximations for FW...

Full description

Saved in:
Bibliographic Details
Main Authors: Aurora Matteo, Ginés Garnés-Morales, Alberto Moreno, Andreia F. S. Ribeiro, Cesar Azorin-Molina, Joaquín Bedia, Francesca Di Giuseppe, Robert J. H. Dunn, Sixto Herrera, Antonello Provenzale, Yann Quilcaille, Miguel Ángel Torres-Vázquez, Marco Turco
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:npj Climate and Atmospheric Science
Online Access:https://doi.org/10.1038/s41612-025-01163-0
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The Canadian Fire Weather Index (FWI), widely used to assess wildfire danger, typically relies on noon-specific meteorological data. However, climate models often provide only daily aggregated values, posing a challenge for accurate FWI calculations. We evaluated daily approximations for FWI95d—the annual count of extreme fire-weather days—against the standard noon-based method (1980–2023). Our findings reveal that noon-based FWI95d show a global increase of ~65% (11.66 days over 44 years). In contrast, daily approximations tend to overestimate these trends by 5–10%, with combinations involving minimum relative humidity showing the largest divergences. Globally, up to 15 million km²—particularly in the western United States, southern Africa, and parts of Asia—exhibit significant overestimations. We recommend (i) prioritizing the inclusion of sub-daily meteorological data in future climate model intercomparison projects to enhance FWI accuracy, and (ii) adopting daily mean approximations as the least-biased alternative if noon-specific data are unavailable.
ISSN:2397-3722