Morphological and Environmental Drivers of Urban Heat Islands: A Geospatial Model of Nighttime Land Surface Temperature in Iberian Cities

This study explores how urban morphological and environmental factors influence Urban Heat Islands (UHIs) using a geospatial modeling approach. The aim of the research is to develop a methodology to assess UHI effects, emphasizing the role of urban morphology, land use, and vegetation in nighttime h...

Full description

Saved in:
Bibliographic Details
Main Authors: Gustavo Hernández-Herráez, Saray Martínez-Lastras, Susana Lagüela, José A. Martín-Jiménez, Susana Del Pozo
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/11/6093
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study explores how urban morphological and environmental factors influence Urban Heat Islands (UHIs) using a geospatial modeling approach. The aim of the research is to develop a methodology to assess UHI effects, emphasizing the role of urban morphology, land use, and vegetation in nighttime heat accumulation. A micro-scale analysis with a 50 m resolution is conducted by integrating a custom QGIS plugin with open-access data, ensuring broad applicability. The 50 m resolution was chosen because it allows for the capture of local variations in UHI intensity while maintaining the scalability of the urban analysis across different city contexts. Non-parametric statistical analyses (ANOVA, Kruskal–Wallis H test, and correlation assessments) were used to evaluate the relationships between the urban parameters—wind corridors, altitude, vegetation (NDVI), surface water (NDWI), and the Sky View Factor (SVF)—and Nighttime Land Surface Temperature (LST). Given that UHI variations during summer, particularly in cities of the Iberian Peninsula, are closely linked to summer heat severity, this factor was considered to classify the cities for the study. Correlation analyses confirm that all tested factors influence LST, with wind corridors being the least significant. The model performance evaluation shows the highest errors in cities with lower summer severity (RMSE = 1.586 °C, MAE = 1.2686 °C, MAPE = 6.99%) and the best performance in warmer cities (RMSE = 1.4 °C, MAE = 1.14 °C, MAPE = 4.5%). Validation in four cities of the Iberian Peninsula confirmed the model’s reliability, with the worst RMSE value of 2.04 °C. These findings contribute to a better understanding of the factors driving UHIs and provide a scalable assessment framework.
ISSN:2076-3417