Neural Signature and Decoding of Unmanned Aerial Vehicle Operators in Emergency Scenarios Using Electroencephalography

Brain–computer interface (BCI) offers a novel means of communication and control for individuals with disabilities and can also enhance the interactions between humans and machines for the broader population. This paper explores the brain neural signatures of unmanned aerial vehicle (UAV) operators...

Full description

Saved in:
Bibliographic Details
Main Authors: Manyu Liu, Ying Liu, Aberham Genetu Feleke, Weijie Fei, Luzheng Bi
Format: Article
Language:English
Published: MDPI AG 2024-09-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/24/19/6304
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Brain–computer interface (BCI) offers a novel means of communication and control for individuals with disabilities and can also enhance the interactions between humans and machines for the broader population. This paper explores the brain neural signatures of unmanned aerial vehicle (UAV) operators in emergencies and develops an operator’s electroencephalography (EEG) signals-based detection method for UAV emergencies. We found regularity characteristics similar to classic event-related potential (ERP) components like visual mismatch negativity (vMMN) and contingent negative variation (CNV). Source analysis revealed a sequential activation of the occipital, temporal, and frontal lobes following the onset of emergencies, corresponding to the processing of attention, emotion, and motor intention triggered by visual stimuli. Furthermore, an online detection system was implemented and tested. Experimental results showed that the system achieved an average accuracy of over 88% in detecting emergencies with a detection latency of 431.95 ms from the emergency onset. This work lays a foundation for understanding the brain activities of operators in emergencies and developing an EEG-based detection method for emergencies to assist UAV operations.
ISSN:1424-8220