Sinter-joining of two different bioceramic materials
In this study, we successfully created an implant to mimic natural bone by combining a load-bearing shell made of zirconia (cortical bone) with an osteoconductive filling made of hydroxyapatite (cancellous bone). Using additive manufacturing, both parts were produced separately followed by a sinter-...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-06-01
|
| Series: | Open Ceramics |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2666539525000264 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this study, we successfully created an implant to mimic natural bone by combining a load-bearing shell made of zirconia (cortical bone) with an osteoconductive filling made of hydroxyapatite (cancellous bone). Using additive manufacturing, both parts were produced separately followed by a sinter-joining process to form one hybrid final part. We first tested the sinter-joining process on a simple ring-in-ring design, creating a defined press-fit between the outer and inner ring. We also introduced sinter supports to ensure excellent alignment and manufactured biaxial bending plates to test the mechanical resistance. We found a significant increase in the maximal measured force from (72±53) N to (366±88) N for a 5 % and 10 % press-fit, respectively. Furthermore, we successfully manufactured a more complex bone implant with this sinter-joining method. |
|---|---|
| ISSN: | 2666-5395 |