On the Convergence of a Family of Chlodowsky Type Bernstein-Stancu-Schurer Operators
We construct a new family of univariate Chlodowsky type Bernstein-Stancu-Schurer operators and bivariate tensor product form. We obtain the estimates of moments and central moments of these operators, obtain weighted approximation theorem, establish local approximation theorems by the usual and the...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2018-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2018/6385451 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We construct a new family of univariate Chlodowsky type Bernstein-Stancu-Schurer operators and bivariate tensor product form. We obtain the estimates of moments and central moments of these operators, obtain weighted approximation theorem, establish local approximation theorems by the usual and the second order modulus of continuity, estimate the rate of convergence, give a convergence theorem for the Lipschitz continuous functions, and also obtain a Voronovskaja-type asymptotic formula. For the bivariate case, we give the rate of convergence by using the weighted modulus of continuity. We also give some graphs and numerical examples to illustrate the convergent properties of these operators to certain functions and show that the new ones have a better approximation to functions f for one dimension. |
---|---|
ISSN: | 2314-8896 2314-8888 |