Marcinkiewicz Integrals on Weighted Weak Hardy Spaces

We prove that, under the condition Ω∈Lipα, Marcinkiewicz integral μΩ is bounded from weighted weak Hardy space WHwpRn to weighted weak Lebesgue space WLwpRn for maxn/n+1/2,n/n+α<p≤1, where w belongs to the Muckenhoupt weight class. We also give weaker smoothness condition assumed on Ω to imply th...

Full description

Saved in:
Bibliographic Details
Main Authors: Yue Hu, Yueshan Wang
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2014/765984
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832556723315933184
author Yue Hu
Yueshan Wang
author_facet Yue Hu
Yueshan Wang
author_sort Yue Hu
collection DOAJ
description We prove that, under the condition Ω∈Lipα, Marcinkiewicz integral μΩ is bounded from weighted weak Hardy space WHwpRn to weighted weak Lebesgue space WLwpRn for maxn/n+1/2,n/n+α<p≤1, where w belongs to the Muckenhoupt weight class. We also give weaker smoothness condition assumed on Ω to imply the boundedness of μΩ from WHw1ℝn to WLw1Rn.
format Article
id doaj-art-0aa2bfa984c74db5ab7b083975c4cf02
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-0aa2bfa984c74db5ab7b083975c4cf022025-02-03T05:44:29ZengWileyJournal of Function Spaces2314-88962314-88882014-01-01201410.1155/2014/765984765984Marcinkiewicz Integrals on Weighted Weak Hardy SpacesYue Hu0Yueshan Wang1College of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454003, ChinaDepartment of Mathematics, Jiaozuo University, Jiaozuo 454003, ChinaWe prove that, under the condition Ω∈Lipα, Marcinkiewicz integral μΩ is bounded from weighted weak Hardy space WHwpRn to weighted weak Lebesgue space WLwpRn for maxn/n+1/2,n/n+α<p≤1, where w belongs to the Muckenhoupt weight class. We also give weaker smoothness condition assumed on Ω to imply the boundedness of μΩ from WHw1ℝn to WLw1Rn.http://dx.doi.org/10.1155/2014/765984
spellingShingle Yue Hu
Yueshan Wang
Marcinkiewicz Integrals on Weighted Weak Hardy Spaces
Journal of Function Spaces
title Marcinkiewicz Integrals on Weighted Weak Hardy Spaces
title_full Marcinkiewicz Integrals on Weighted Weak Hardy Spaces
title_fullStr Marcinkiewicz Integrals on Weighted Weak Hardy Spaces
title_full_unstemmed Marcinkiewicz Integrals on Weighted Weak Hardy Spaces
title_short Marcinkiewicz Integrals on Weighted Weak Hardy Spaces
title_sort marcinkiewicz integrals on weighted weak hardy spaces
url http://dx.doi.org/10.1155/2014/765984
work_keys_str_mv AT yuehu marcinkiewiczintegralsonweightedweakhardyspaces
AT yueshanwang marcinkiewiczintegralsonweightedweakhardyspaces